AN819

MicroBolt

Micromint, inc
| ——

The MicroBolt controlling an 12C EEPROM 12/30/2005

Introduction:
This application notes demonstrates how to use the MicroBolt as an 12C Master to control a slave EEPROM on the I2C serial bus.

Background:
The Philips 2 wire 12C Serial bus is a very popular 2-wire network. Many devices are available that support connection to this

serial bus. Since the MicroBolt is based off from a Philips LPC2106 controller, its 12C implementation is highly integrated and
provides ease of control over these devices. One such popular I2C device product line is the Microchip 24xxxx EEPROM
family. The MicroBolt development board supports an EEPROM, 8 pin DIP package size, via the U7 socket. For this example,
an 8K-Byte Microchip 24LC64 device was used.

Schematic:
[ANE
£V
TEDO0-3 O::EI JRL7
RED0-3
[P -MODE- 5 KX
TEES —
[20-BCL-3
f[zC-3Da-3 3.5V JP1E
BF [-3CK-3
SFI-30-3
BFI-3[-3
SFI-C3-3
TED1-3 B40
E}Egﬂ;_s DInls
- nInld
DIl
g%gg Dinly
0 [Dinll
oo Dinlo
0 [0e nIog
I [0 LI
MICROEOQLT40
o2
Ote—ao 2. 2W JP35
JPZEEZ | ol e a0 TOC|e-o 230 32U 2. 3Veee0
- a1l =] S »
A SCL|= =
Ore—e 3. 3W [iio o a0 A £
JP33 |0 ie —
Colg ¥ Z2LCEd
O}t ec 33V BlE Dle
JP24 |ode = 10k 10k
e [EIRE LT SRR) — e 33T
[
. Jr=g JP 37

How it works:

This ImageCraft ICCARM demo project is based upon the MicroBolt 12C Master demo project and utilizes the MicroBolt's 12C
serial channel. The MicroBolt is setup as a master on the 12C bus and a Microchip 24LC64 is setup as a slave. The 24LC64
slave address is set to 0x50. The 24L.C64 is located on the MicroBolt development board as U7. The example code simply
writes 4 bytes to the EEPROM, reads them back continuously, and then outputs the data to the MicroBolt Serial Debugger for
inspection.

By including MicroBolt_I2C_Functions.c and MicroBolt_I2C_Functions.h in your own project, the EEPROM functions found in
MicroBolt_12C_EEPROM.c can be copied and used in your own program. The EEPROM functions are very easy to use and
isolate the user from any 12C coding. The EEPROM functions also implement ACK polling which polls the EEPROM after a
write to verify it has finished writing to the internal EEPROM memory. This maximizes I2C bus throughput and guarantees the
data has been successfully written to the EEPROM.

The following EEPROM functions, and their example use, are shown below:

EepromWriteByte(0x0001, 0x03); I/ Write the EEPROM at address 0x0001 with data 0x03
EepromDataValue = EepromReadByte(0x0001); // Read the EEPROM at address 0x0001

As shown, for writing to the EEPROM, all that's required is the address and data. For reading, all that is required is the address
and then the data is returned.

This provides read and write examples for the MicroBolt when interfacing to an EEPROM over the I12C bus.

For demo purposes, the MicroBolt’s UARTO and the MicroBolt Serial Debugger was utilized. Adding this capability to any
program is simply done by including the SerialDebugger.c and SerialDebugger.h files and UARTO setup into your project.

Required tools and/or parts

-Microchip 24LC64, 8 pin, 8K Byte EEPROM (can be purchased from Digikey)

-MicroBolt development kit (Board, cables, power supply, schematics, etc.)

-MicroBolt Serial Debugger (PC Windows program on MicroBolt development kit CD or Micromint website)
-Philips Flash Utility (PC Windows program on MicroBolt development kit CD or Philips website)

Instructions

1. Plug 24LC64 EEPROM into the U7 socket on MicroBolt development board.

2. Configure the following jumpers on the MicroBolt development board: JP32, JP33, and JP34 need a jumper on pins 2 & 3.
Install JP37 and JP38 jumpers. Remove jumper from JP35.

3. Connect serial port cable from PC to J1 of MicroBolt development board (verify COM port jumpers via the datasheet).

4. Power up the MicroBolt development board and download the demo project to the board via the Philips serial flash utility.
5. Power off the MicroBolt development board.

6. Open up the MicroBolt Serial Debugger, select the desired COM port, and open it.

7. Power up the MicroBolt development board.

8. EEPROM test data should now be displayed in the Serial debugger debug windows.

9. Change the EEPROM write data in the code, redownload, and verify the displayed EEPROM data in the debugger changes
accordingly.

MicroBolt Serial Debugger screenshot:

R
L A MicroBolt Debugger
Micromint i e

Wersion 1.0
Pride Embedded, LLG

— MicraBaolt LED COM Part - 115200 B aud
= COM1
MicraBolt LED OM
| Port OPEN COM2
 COM3
MizraBolt LED BLIME. Comd
Claze COM Part | ¢ COMS
MicroBalt LED DFF COME
& COMF
Senal Debug Windows
[ebug-1 D ebug-4 [Debug-7
IMicrnBoIt EEPROM dema | I.-’-'u:lu:lress 001 OF walue: 023F
Debug-2 Debug-5 Debug-8
I.&ddress Ow0001 walue: 03 | IAddress 01 FFF walue: 0<FF
Debug-3 Debug-E [Debug9
IAddress Ox00F D vwalue; 04F | IEEF'FIDM reads: 105604

Waveforms:

The following waveform capture shows a byte being written to the EEPROM from the MicroBolt over the 12C bus. The first
byte is the EEPROM slave address of 0x50, the next 2 bytes are the EEPROM address 0x0101, and the last byte is the associated
data OXAA.

;ﬁnnta - 8-bit Logic Analyzer - |EI 1[
File Analyzer View Help

sHE Qaaalz)i ? @
Sample Clock Speed | Trigger Position [10%]} Trigger Type

1 Modul
(IF\LZBCSX’Y‘ j I SHHz (200n=) j I_I " Pattem = Edge Advanced

Speed Select:
Chooze an acquisition speed between S00MHz [2ng] and 100Hz [10ms]

PU|P1 U W’lraName‘ EEI|E:1| | —51I2us 255us | ‘UnT - |255us 5. 2us ‘ ?E.IBus mzausl ‘12?us‘ | |'|535us 1792usk 204‘;.&?3' 23EI|4usI ‘25?us‘ | ‘281 Bus EU?2uS‘ |
oSt 1| !
lecsbs 10 ‘ I 5
[2CPackel | 0 0 | |
0l 1 i
0o ! !
11 :
1 :
1 :

e A | =l
C0=1988us C1=-56us Difference = 204 dus [= 4.89237 KHz |

\waveforms | Advanced Triggering |

|RLZBCS%Y 5 an AntE Module search [Pns: 7 === 720 af A

The following waveform capture shows 4 data bytes being read from the EEPROM by the MicroBolt over the 12C bus. This is
done via 8 I12C packets. Each read requires an address selection, then a data read from that address. The 4 data bytes being read
back are 0x03 OxOF Ox3F OxFF.

i!nnta—s—hit Logic Analyzer o =]}
File Analyzer ‘diew Help

sEHS «aah |2 R

1 todul ~Sample Clack Speed——— Trigger Position [10%]} Trigger Type

’7 [ALaBCS:Y = [2.5HHz (400ns) =] I " Palten Edge O ddvanced

Module Select:
This selection box shaws all the modules detected on the PC. |t is updated every 10 seconds
I there iz more than one module you can select the module to use

F.D| Pl U W’lraName‘ :0| c1| |mz 4us| |Umsl . |mz dus | 20:1 Bus | anT 2us | 40? Bus ‘ |51?us| | |514 us | THIBBus | sw?.zus | 921I Buis ‘ |1'D\24Ts | |1 wlzsnlns | |1.2|25Ts| ‘1.3|31Ts| |1.4|.
Zoect 11
csos |0 oo J I J !
[2CPackel | 1| 1 [I I | | | | | I I
ool I
ool I
11 :
11 :
11 :

1 |
CO=-1156us C1=1.105ms Difterence = 1.22ms [= 819.672 Hz |

WWaveforms | Advanced Triggering |
|RL2BCS3Y 5 an Ants Module |dons [Pins: 7=~ 1310 9 —

The following waveform capture shows ACK polling from the MicroBolt to the EEPROM over the I2C bus. To determine when
the EEPROM has finished writing to its internal memory, the MicroBolt continuously sends the EEPROM slave address of 0x50
and looks for an ACK. If it receives a NAK, then it continues the ACK polling as shown below. On the last packet, an ACK
was received and the ACK polling stopped.

;ﬁnnta - 8-bit Logic Analyzer =10 x|

File Analyzer View Help

sHE Qaaalz)i ? @
Sample Clock Speed | Trigger Position [10%]} Trigger Type

1 Modul
(IF\LZBCSX’Y‘ j ISDDKHZ { Zus) j I_I " Pattem = Edge Advanced

Maodule Select:
This zelection box shaws all the modules detected on the PC. |t iz updated every 10 seconds,
If there is mare than one module you can select the madule to use

PU| Pl U W’lraName‘ EEI| c1|| STIEMTSI ‘3.1I35msl |3.'|I58msl |3.2Ims ‘ |3.2‘32msl |32|54ms| 3.2|95Ts| 3.3|28ri13| a.alsm? | 3'3\82113\ 3.4|24Ts| 34I55n|13I 3.4I88Tsl 3.5I2ms | |3.5‘52ms‘ |3.
B l2E5CL 00
esoa 0 o UL JUUUL_ JUTUL JLULL UULL . TUUUL JUUTL |
I2CPacket | 1| 1 L i i [[I [
oo
0o
T
1
1
| — al 1 15
CO=0us C1=754us Difference = 75dus [=1.32626 KHz |

\waveforms | Advanced Triggering |
|RLZBCS%Y 5 an AntE Module search T | 7

Program Listing:

/*

| = m
I __
| File Name : MicroBolt_I12C_EEPROM.c

| Author : Micromint, Inc.

| Copyright : Copyright © 2005, Micromint, Inc.

| Creation Date : 12/30/05

| Version : 1.00

| Spaces per tab 12

| Description : Main C file

] Revision : Initial

I __
| ==
*/

/*

=

| Includes

I __

*/

#include <ARM/philips/Ipc210x.h>
#include <arm_macros.h>

#include "MicroBolt_I12C_EEPROM.h"
#include "MicroBolt_12C_Functions.h"
#include "SerialDebugger.h"

/*
e
| Function : main

| Inputs s None

| Outputs o None

| Purpose : Main function for system

| Author : Micromint, Inc.

unsigned char EepromDataValue =
unsigned int Delay, ReadCount;

0;

void main(void)

{
__ DISABLE_INTERRUPTQ);

MAM_CR = 0x00;
MAM_TIM = 0x04;

MAM_CR = 0x02;

*/
SCB_PLLCFG |= Ox23;
SCB_PLLCON |= Ox01;
SCB_PLLFEED = OxAA;
SCB_PLLFEED = Ox55;

*

/
VICVectAddrO = (unsigned)pll_isr;
VICVectCntlO = INTERRUPT_CHANNEL_FOR_PLL;
VICIntEnable = INTERRUPT_ENABLE_FOR_PLL;
VICVectAddrl = (unsigned)Il2c_ISR;
VICVectCntll = INTERRUPT_CHANNEL_FOR_12C;
VICIntEnable = INTERRUPT_ENABLE_FOR_12C;

/*

|-

| Config GPIO

I _________________________

*/

PCB_PINSEL0=0x00000055;
PCB_PINSEL1=0x55400000;

// Setup with
//

GPIO_IODIR |= MICROBOLT_LED;

GP10_IOCLR=OXFFFIffff;

*/
UARTO_IER = 0x00000001;
UARTO_FCR = 0x00000001;
UARTO_LCR = 0x00000083;
UARTO_DLM = 0;
UARTO_DLL = BAUD_RATE_115200;
UARTO_LCR = 0x00000003;

/*

// Disable all interrupts

// Turn MAM off (default)

Set flash timing to 4 clock cycles

// Fully enable the Memory Accleration Module

Set to 59 MHz (0x03 is multiply value of 4)
Enable the PLL

Shadow register copy to enable changes

in PLLCON and PLLCFG

// Peripheral clock is 1/4th Processor clock which equals 14.7456 MHz

// Assign the PLL lock ISR vector address
// Assign the VIC address to the actual interrupt
// Enable the interrupt

// Assign the 12C ISR vector address
// Assign the VIC address to the actual
// Enable the interrupt

interrupt

ICCARM App builder - MicroBolt_12C_EEPROM.bcf (12C & UARTO)
(Secondary JTAG pins)

// Setup MicroBolt LED as output

// Clear all pins to start with

// Receive interrupts

// Enable the fifos

// Enable the divisor

// Divisor latch MSB (for baud rates < 4800)
// Divisor latch LSB

// Close it, then UART works with divisor

*/
12C_12SCLH = 37; // 12C clock is 200 KHz (14.7456 MHz/(SCLH + SCLL))
12C_12SCLL = 37;
12C_I12CONSET = 12C_ENABLE_BIT; // Enable the 12C channel
_ ENABLE_INTERRUPTQ); // Enable all interrupts
/*

*

/
EepromWriteByte(0x0001, 0x03); // Write the EEPROM at address 0x0001 with data 0x03
EepromWriteByte(Ox00F0, OxOF); // Write the EEPROM at address OxOOFO with data OxOF
EepromWriteByte(0x010F, Ox3F); // Write the EEPROM at address Ox010F with data Ox3F
EepromWriteByte(Ox1FFF, OxFF); // Write the EEPROM at address Ox1FFF with data OxFF
GPIO_IOSET = MICROBOLT_LED; // EEPROM written to, turn on MicroBolt LED
for (Delay = 0; Delay < 370000; Delay++); // Delay for 100 mS before starting serial routines
SerialDebuglLed(LED_ON); // Turn on MicroBolt serial debugger LED
SerialDebug(1, " "MicroBolt EEPROM demo™); // Output string to MicroBolt Serial Debugger Debug window 1

/*

=

| Start of application

L
while(l) // Do this forever

{
/*

*
/
EepromDataValue = EepromReadByte(0x0001); // Read the EEPROM at address 0x0001
SerialDebug(2,""Address 0x0001 value: Ox%X'", EepromDataValue); // Output string to Debug window 2
EepromDataValue = EepromReadByte(0x00F0); // Read the EEPROM at address O0xOOFO
SerialDebug(3,"Address OxO00FO0 value: Ox%X', EepromDataValue); // Output string to Debug window 3
EepromDataValue = EepromReadByte(0x010F); // Read the EEPROM at address Ox010F
SerialDebug(7,"Address 0x010F value: Ox%X', EepromDataValue); // Output string to Debug window 7
EepromDataValue = EepromReadByte(0x1FFF); // Read the EEPROM at address Ox1FFF
SerialDebug(8, " Address Ox1FFF value: Ox%X', EepromDataValue); // Output string to Debug window 8
ReadCount++; // Increment read counter
SerialDebug(9,""EEPROM reads: %d', ReadCount); // Output string to window 9
for (Delay = 0; Delay < 37000; Delay++); // Delay 10 mS between serial data so as not to bog down PC
¥
}
/*
l------------------"--"----"-"-"-"-—
| Function z EepromWriteByte
| Inputs : EEPROM Address and Data
| Outputs : None
| Purpose : Write a byte to the EEPROM
| Author s Micromint, Inc.
D
void EepromWriteByte(unsigned short EepromAddress, unsigned char EepromData)
{
extern unsigned char 12cSlaveAddress; // 12C slave address
extern unsigned char 12cBuffer[20]; // 12C application buffer
extern unsigned char l2cPacketDataSize; // Number of data bytes for an 12C packet
extern unsigned char 12cPacketInProgress; // 12C Packet in progress flag

unsigned short EepromAddressTemp; // Temp storage register for address calculation

12cSlaveAddress = 12C_SLAVE_ADDR_EEPROM; // Address the EEPROM
12cPacketDataSize = 3; // How many bytes from the 12c buffer to send

EepromAddressTemp = EepromAddress & OxFFO0O; // Mask top byte of address
EepromAddressTemp = EepromAddressTemp >> 8; // Shift it over by 8

12cBuffer[0] = (unsigned char)EepromAddressTemp; // MSB address byte for EEPROM
12cBuffer[1] = (unsigned char)(EepromAddress & OxO0FF); // LSB address byte for EEPROM

12cBuffer[2] = EepromData; // Data byte for EEPROM
12cStart(12C_WRITE); // Send out an 12C Start condition for a Write packet
while(l2cPacketInProgress == TRUE); // Wait here for 12C packet to complete
12cSlaveAckPol1(); // Go ACK poll the EEPROM and wait for data to be written
3
/*
| =
| Function : EepromReadByte
| Inputs : EEPROM Address
| Outputs : Byte from the EEPROM
| Purpose : Read a byte to the EEPROM
| Author : Micromint, Inc.
I __
*/
unsigned char EepromReadByte(unsigned short EepromAddress)
{
extern unsigned char l2cSlaveAddress; // 12C slave address
extern unsigned char I12cBuffer[20]; // 12C application buffer
extern unsigned char l2cPacketDataSize; // Number of data bytes for an 12C packet
extern unsigned char l2cPacketInProgress; // 12C Packet in progress flag
unsigned short EepromAddressTemp; // Temp register
I2cSlaveAddress = 12C_SLAVE_ADDR_EEPROM; // Address the EEPROM
I2cPacketDataSize = 2; // How many bytes from the 12c buffer to send

EepromAddressTemp = EepromAddress & OxFFO0O; // Mask top byte of address
EepromAddressTemp = EepromAddressTemp >> 8; // Shift it over by 8

12cBuffer[0] = (unsigned char)EepromAddressTemp; // MSB address byte for EEPROM
12cBuffer[1] = (unsigned char)(EepromAddress & OxOOFF); // LSB address byte for EEPROM

12cStart(12C_WRITE); // Send out an 12C Start condition for a Write packet
while(l2cPacketInProgress == TRUE); // Wait here for 12C packet to complete
12cSlaveAddress = 12C_SLAVE_ADDR_EEPROM; // Address the EEPROM
I12cPacketDataSize = 1; // How many bytes from the 12c buffer to send
12cStart(12C_READ); // Send out an 12C Start condition for a Read packet
while(l12cPacketInProgress == TRUE); // Wait here for 12C packet to complete
return(12cBuffer[0]); // Return the byte read from the EEPROM
3

/*

|----------m

| Function : pll_isr

| Inputs o None

| Outputs : None

| Purpose : Once PLL has locked, connect it and use for system clock

| Author : Micromint, Inc.

I __

*/

#pragma interrupt_handler pll_isr
void pll_isr(void)

{
SCB_PLLCON |

= 0x02; // Connect the PLL
SCB_PLLFEED = OxAA; // Shadow register copy to enable changes
SCB_PLLFEED = 0Ox55; // in PLLCON and PLLCFG
VICIntEnClear = PLL_CLR; // Clear PLL interrupt flag
VICVectAddr = VIC_ACK; // Acknowledge Interrupt

}

	MicroBolt
	12/30/2005

