
1

Micromint
Chips DOMINO-1™

© 1997 Micromint, Inc. Rev. 2.0 January, 2000

Microcomputer/controller
with embedded BASIC interpreter

80C52
with

BASIC
interpreter

SRAM

EEPROM
with utilities

ADC

D
om

ino connector

8–12

Line receiver

Line driver

2

optional

+5
Gnd

Serial I/O
RS-232A, RS-422,
and RS-485

TTL I/O

Analog inputs

5-V power

+5V 20

ADC0 19

ADC1 18

T1 17

T0 16

*Int1 15

*Int0 14

Tx+ 13

Tx– 12

Rx– 11

1 Ground

2 Port 1.7

3 Port 1.6

4 Port 1.5

5 Port 1.4

6 Port 1.3

7 Port 1.2

8 Port 1.1

9 Port 1.0

10 Rx+

Bottom view

1

Bottom view

FEATURES

• 10-100 millisecond instruction execution time
• Small size—complete computer/controller with I/O in less than
1.0 cubic inches (1.1” × 1.79” × 0.5²)

• Low power—only 150 mW typical
• Operates on +5 V at 30 mA (typical)
• Communications through RS-232A, RS-422, or RS-485 serial

port up to 115.2 kbps; internal on-chip level shifters
• Full floating-point BASIC for easy programming
• On-chip firmware that measures period and frequency and

supports two PWM outputs and I²C bus
• 32-KB SRAM for “enter and execute” program testing
• 32-KB EEPROM nonvolatile storage for autostart applications
• 2 × 10 square-pin header carries all signals (mates with ribbon

cable or PCB)
• Optional 2-channel, 12-bit ADC, 7000k samples/second

Assembly, 250K samples/second BASIC
• 11.059 MHz system clock
• 2 interrupts and 3 timers
• Parallel I/O—12 bits with 3 shared with ADC and I²C

DESCRIPTION

The DOM I NO-1 microcontroller is a rugged, miniature
controller with a fast, control-oriented, processor masked
BASIC interpreter. DOMINO-1 programs can be entirely BASIC
or a mixture of BASIC and assembly language routines with a
BASIC CALL instruction.

DOMINO-1 is designed to be a 100% stand-alone, low-
power, embedded controller, which only requires a user to
apply power to function. DOMINO-1 is both RS-232A and RS-
485 compatible without extra components. Based on a CMOS
80C52 processor, DOMINO-1 provides a ROM-resident BASIC
interpreter, 32 KB of static RAM, 32 KB of nonvolatile
EEPROM, 12 parallel I/O lines, a 2-channel sample-and-hold
12-bit A/D converter, integral drivers/receivers for RS-422/ 485
and RS-232A communications.

Additional firmware enables program calls to directly read
frequency and period, set PWM pulse width and duty cycle,
communicate with I²C bus peripherals, and save programs to
EEPROM that can be auto started.

2

DOMINO-1™

PINOUT

Ground Single point digital and analog ground
Port 1.7 TTL I/O bit 7 (available through BASIC; optional

ADC uses Port 1.7 as CS input and I2C as CLK)
Port 1.6 TTL I/O bit 6 (available through BASIC; both ADC

and I2C use Port 1.6 as Data I/O)
Port 1.5 TTL I/O bit 5 (available through BASIC; optional

ADC uses P1.5 as CLK)
Port 1.4 TTL I/O bit 4 (available through BASIC)
Port 1.3 TTL I/O bit 3 (available through BASIC)
Port 1.2 TTL I/O bit 2 (available through BASIC)
Port 1.1 TTL I/O bit 1 (available through BASIC)
Port 1.0 TTL I/O bit 0 (available through BASIC)
Rx+ RS-422/485 noninverted serial (receive pair/rec-

xmit pair)
Rx– RS-422/485/232A inverted serial (receive pair/

rec-xmit pair/receive)
Tx– RS-422/485/232A inverted serial (transmit pair/rec-

xmit pair/transmit)
Tx+ RS-422/485 noninverted serial (transmit pair/rec-

xmit pair)
*Int0 TTL interrupt input and general-purpose I/O bit

(available through assembly language)**
*Int1 TTL interrupt input and general-purpose I/O bit

(available as interrupt through BASIC)**
T0 Serial transmitter disable control, TTL timer/

counter input and general-purpose I/O bit
(available through assembly language)**

T1 TTL timer/counter input and general-purpose I/O
bit (available through assembly language)**

ADC1 Analog input 1 (0–5 V)
ADC0 Analog input 0 (0–5 V)
+5V Regulated 5-V input for digital and analog circuitry

(analog inputs referenced to this input)

* Triggered on the falling edge
** Refer to Section 5.0 (Controlling I/O Bits Directly)

MECHANICAL AND ENVIRONMENTAL
CHARACTERISTICS

Length 1.79 inches
Width 1.1 inches
Height 0.5 inches
Weight 18.5 grams
Operating temperature 0 to +70°C

(optional –40 to +85 °C)
Humidity 0 to 100% (noncondensing)

ABSOLUTE MAXIMUM RATINGS

Operating temperature Commercial 0°C to +70°C
Industrial –40°C to +85°C
Storage temperature –50°C to +125°C
Voltage on Vcc to Vss 0 to +7 V

Microcontroller
MODEL S/N

DOMINO
TM

A

B

pin 1

H

IJ F
E

D

C

G

Inches Millimeters
Dim Min Max Min Max

A 1.790 1.800 45.47 45.72
B 1.095 1.105 27.81 28.07
C 0.495 0.505 12.57 12.83
D 0.090 0.110 2.29 2.79
E 0.880 0.900 22.35 22.86
F 0.18 5 0.23 0 4.70 5.84
G 0.09 5 0.10 5 2.41 2.67
H 0.09 5 0.10 5 2.41 2.67
I 0.02 3 0.02 7 0.58 4 0.68 6
J 0.09 5 0.11 5 2.41 0 2.92

3

DOMINO-1™

Operating temperature Ta = 0°C to +70°C
Operating voltage Vcc = 4.75 V to 5.25 V

Vss = 0.0 V

Characteristic Minimum Typical Maximum Units Condition

Supply Voltage (Vcc) 4.75 5.00 5.25 V
Supply Current (Icc) 30-50 mA

(RS-422/485 50-Ω
termination disabled)

Input Low Voltage (Vil) –0.5 0.9 V
Input High Voltage (Vih) 1.9 5.5 V
Output Low Voltage (Vol) 0.45 V Iol=1.6 mA
Output High Voltage (Voh) 4.5 V Ioh=–10 µA

2.4 V Ioh=–400 µA

DC ELECTRICAL CHARACTERISTICS

Note 1: RS-232A is characterized as a ±5-V bipolar signal (as
opposed to RS-232C at ±12 V). Drivers and receivers are ac-
tually RS-422 and the interface is an RS-423 connection (single
ended to differential). Domino RS-232A Voltage output is

Note 2: Two diodes are tied to each analog input which will
conduct when the input voltage is one diode drop below ground
or one diode drop above Vcc. To achieve absolute 0–5-V input

Characteristic Minimum Typical Maximum Units Condition

Differential Driver
Output Voltage 5.0 V Unloaded

See Note 1
RS-422 2.0 5.0 V R=50 Ω
RS-485 1.5 5.0 V R=27 Ω
Maximum Receiver
 Input voltage ±14 V
ESD Protection 2000 V

COMMUNICATION LINE DC ELECTRICAL CHARACTERISTICS

Characteristic Minimum Typical Maximum Units Condition

Resolution 12 bits
Linearity Error ±3⁄4 bits
Offset and Gain Error ±2 bits
Voltage Reference 4.5 5.0 5.5 V VREF is Vcc
Analog Input Range –0.5 to Vcc+0.05 V See Note 2
Analog Input Impedance 250k Ω See Note 3

A/D CONVERTER CHARACTERISTICS

range requires Vcc to be greater than 4.950 V.

Note 3: The ADC input impedance is a function of clock fre-
quency. The sampling frequency of the DOMINO ADC built-in
utility results in a typical impedance of 250 kΩ.0-5V only.

4

DOMINO-1™

1.0 PROGRAMMING CHARACTERISTICS
DOMINO-1 is a complete computer/controller in one tiny

package. The embedded BASIC interpreter and firmware pro-
vide the user with a direct means to enter and save an
autostarting control program without expensive development
tools. Such powerful advantages facilitate completing a pro-
gramming task in record time. You can write, test, and save
code in nonvolatile storage directly on DOMINO-1.

The friendly, control-oriented BASIC command set allows
easy access to the integrated digital and analog I/O functions.
Conversion calculations are a breeze thanks to BASIC’s float-
ing-point number crunching. Because of the power of a high-
level language such as BASIC, useful programs often take less
than a dozen programming statements. Nonetheless,
DOMINO-1 has over 30 KB of space reserved for your appli-
cation code and the utilities. For application notes, please

Even though DOMINO-1 is optimized for BASIC programs,
assembly language programs are easily accommodated as
callable routines. A DOMINO-1 application program can be all
BASIC, BASIC with callable assembly language routines, or
virtually all assembly language with the only BASIC command
being an introductory CALL.

DOMINO-1 contains all the communication interface hard-
ware. It can be used standalone to monitor analog and digital
inputs and to provide control outputs directly to machine or
network interfaces. When connected serially, DOMINO-1 can
serve as a remote device, reporting monitored conditions to
your PC or receiving commands to control external compo-
nents. If multiple DOMINO-1s are networked with a master PC
or another DOMINO-1, multidrop units can share information
collected throughout the network.

0FFFFH

0F000H

0E000H

0D000H

0C000H

0B000H

0A000H

09000H

08000H

07000H

06000H

05000H

04000H

03000H

02000H

01000H

00000H

3
2
k

E
E
P
R
O
M

3
2
k

S
R
A
M

Memory management
Development mode Application mode

DOMINO utilities

User’s program
autostart information

DOMINO utilities

(when necessary)
interrupt vectors

(when necessary)
interrupt vectors

User’s program
BASIC’s external data BASIC’s external data

2.0 MEMORY MAP
The 64-KB memory is based on an 8051 microcontroller's

memory structure. The upper 32 KB is devoted to ROM and
the lower 32 KB to RAM.

2.1 DEVELOPMENT MODE

When you're in the development mode, the lower 32 KB
of memory is used as temporary storage for BASIC's programs,
variables, and jump vectors.

The development mode is used to test and debug BASIC
programs. The top of the upper ROM space holds the utilities
which are callable functions complementing BASIC's floating-
point commands.

2.2 APPLICATIONS MODE

Finished BASIC programs are saved in the upper 32 KB
of nonvolatile ROM space along with the utilities. BASIC pro-
grams can be autoexecuted on powerup or reset.

The lower 32 KB of RAM space is used for storage of
temporary variables and jump vectors.

visit www.micromint.com.

5

DOMINO-1™

3.0 BASIC INSTRUCTION SET
Command Function
RUN Execute a program
CONT Continue after a stop or Control-C
LIST List program to the console device
LIST# List program to serial printer port (P1.7)
NEW Erase the program stored in RAM
NULL Set null count after carriage return/line feed
RAM Evoke RAM mode, current program in read/write memory
ROM Evoke ROM mode, current program in ROM/EPROM
XFER Transfer a program from ROM/EPROM to RAM

Statement Function
BAUD Set data-transmission rate for line-printer port
CALL Call assembly-language program
CLEAR Clear variables, interrupts, and strings
CLEARS Clear stacks
CLEARI Clear interrupts
CLOCK1 Enable real-time clock
CLOCK0 Disable real-time clock
DATA Data to be read by READ statement
READ Read data in DATA statement
RESTORE Restore READ pointer
DIM Allocate memory for arrayed variables
DO Set up loop for WHILE or UNTIL
UNTIL Test DO loop condition (loop if false)
WHILE Test DO loop condition (loop if true)
END Terminate program execution
FOR-TO-{STEP} Set up FOR...NEXT loop
NEXT Test FOR...NEXT loop condition
GOSUB Execute subroutine
RETURN Return from subroutine
GOTO GOTO program line number
ON GOTO Conditional GOTO
ON GOSUB Conditional GOSUB
IF-THEN-{ELSE} Conditional test
INPUT Input a string or variable
LET Assign a variable or string a value (LET is optional)
ONERR ONERR or GOTO line number
ONTIME Generate an interrupt when time is equal to or greater than

 ONTIME argument; line number is after comma
ONEX1 GOSUB to line number following ONEX1/ when INT1 pin is

 pulled low
PRINT Print variables, strings, or literals, P. is shorthand for print
PRINT# Print to serial printer port (P1.7)
PH0. Print hexadecimal mode with zero suppression
PH1. Print hexadecimal mode with no zero suppression
PH0.# PH0.# to serial printer port (P1.7)
PH1.# PH1.# to serial printer port (P1.7)
PUSH Push expressions on argument stack
POP Pop argument stack to variables
PWM Pulse-width modulation
REM Remark
RETI Return from interrupt
STOP Break program execution
STRING Allocate memory for strings
UI1 Evoke user console input routine
UI0 Evoke BASIC console input routine
UO1 Evoke user console output routine
UO0 Evoke BASIC console output routine

Operator Function
CBY() Read program memory
DBY() Read/assign internal data memory
XBY() Read/assign external data memory
GET Read console
IE Read/assign IE register
IP Read/assign IP register
PORT1 Read/assign I/O port 1 (P1)
PCON Read/assign PCON register
RCAP2 Read/assign RCAP2 (RCAP2H:RCAP2L)
T2CON Read/assign T2CON register
TCON Read/assign TCON register
TMOD Read/assign TMOD register
TIME Read/assign real-time clock
TIMER0 Read/assign TIMER0 (TH0:TL0)
TIMER1 Read/assign TIMER1 (TH1:TL1)
TIMER2 Read/assign TIMER2 (TH2:TL2)
+ Addition
/ Division
** Exponentiation
* Multiplication
- Subtraction
.AND. Logical AND
.OR. Logical OR
.XOR. Logical exclusive OR

Stored Constant
PI PI - 3.1415926

Operators-Single Operand
ABS() Absolute value
NOT() One’s complement
INT() Integer
SGN() Sign
SQR() Square root
RND Random number
LOG() Natural log
EXP() “e” (2.7182818) to the X
SIN() Returns the sine of argument
COS() Returns the cosine of argument
TAN() Returns the tangent of argument
ATN() Returns the arctangent of argument

Utility Calls (executed as CALL {address})
PROG Save the current program in EEPROM
PROG1 Save data-transmission-rate information in EEPROM
PROG2 Save data-transmission-rate information in EEPROM and

execute program after reset
PROG3 Save data-transmission-rate information in EEPROM and saves

MTOP
PROG4 Save data-transmission-rate information in EEPROM and

execute program after reset
ADC read 0–5-V input on AD0 or AD1, measurement returned as

floating-point value
PWM continuous background PWM tasking
FREQ measurement of TTL input frequency
PERIOD measurement of TTL input period
I2C communication with external I2C peripherals

6

DOMINO-1™

C Keypad Initialize 0F100H
Hook into UI0/1 BASIC command 0F108H

I C LCD Initialize 0F030H
Clear display and home cursor 0F038H
Display $(0) string 0F040H

Hook into UI0/1 BASIC command 0F050H

Utilities Version Number 0FFF0H

3.1 Domino Utilities Function Calls

Feature Function Call Address
12- bit Analog-Digital Conversion Single-ended channel 0 0F000H

Single-ended channel 1 0F008H
Differential +/- 0F010H
Differential -/+ 0F018H

Single-ended channel 1 & 0 0F020H

8-Bit Analog-Digital Conversion Single-ended channel 0 0F080H
NOTE: Only available when connected externally

Pulse-Width Modulation Start PWM0 using TIMER0
and *INT0 ad outputs 0F060H

Stop PWM0 immediately 0F068H
Start PWM1 using TIMER1

and *INT1 ad outputs 0F064H
Stop PWM1 immediately 0F06CH

Period and Frequency Start measurement on*INT0 0F070H
Start measurement on *INT1 0F074H

Retrieve measurement on INT0 0F078H
Retrieve measurement on INT1 0F07CH

Program the EEPROM (PROGx) PROG 0FF00H
PROG1 0FF08H
PROG2 0FF10H
PROG3 0FF18H
PROG4 0FF20H

I2C Byte Transfer Retrieve Registered Byte 0F12CH
Send Byte 0F120H

Retrieve Byte 0F124H

I C Beeper 0F110H
I

2

2

2

DOMINO-1™

7

4.0 DOMINO FUNCTION CALL PROCEDURES (REV 1.00)
These function calls are loaded into the EEPROM above

BASIC program storage by a utility loader. The DOMINO-1 firm-
ware is preloaded at the factory prior to shipment. Should it be
accidently erased or need to be revised, it can be repro-
grammed using the bootstrap loader diskette included in the
DOMINO-1 development software package.

DOMINO-1 is potentially reprogrammable even while sol-
dered in an end-use application. This reprogramming reduces
obsolescence, making it possible for a user to upgrade current
DOMINO-1 stock with the latest enhancements.

Micromint has included additional utilities with its built-in
BASIC interpreter. Not only do you have the power of a full
floating-point BASIC, but you also have extra functions to help
make your application extremely easy to produce. The added
functions include analog measurement, dual PWM outputs,
dual period/frequency input measurements, I2C bus compat-
ibility (e.g., LCD output and keypad input), and program stor-
age in EEPROM for autostarting your application on power-
up. These functions are written in assembler to be extremely
fast. They are simple to use straight from BASIC.

ADC read 0–5-V input on AD0 or AD1, measurement
returned as floating-point value

PWM continuous background PWM tasking
FREQ measurement of TTL input frequency
PERIOD measurement of TTL input period
PROG1–4 autoexecutable program storage into nonvolatile

EEPROM
I2C communication with external I2C peripherals

Syntax: CALL {address}
POP {variable}

Function: The CALL initiates an analog-to-digital conversion.
The result is presented on the stack to be POPed by the user.

Mode: Command, Run

Use: [single-ended channel 0]
CALL 0F000H
POP {variable}

[single-ended channel 1]
CALL 0F008H
POP {variable}

[differential +/-]
CALL 0F010H
POP {variable}

[differential -/+]
CALL 0F018H
POP {variable}

[single-ended channel 1 & 0]
CALL 0F020H
POP {variable},{variable}

Description: The processor’s Port1 pins (P1.7 *CS, P1.6 Data,
and P1.5 CLK) are used to access either the internal LTC1298
(DOMINO-1A) or an externally connected LTC1298 (DOMINO-
1). The LTC1298 offers a number of different connection con-
figurations. Two ADC input channels are available when each

4.1 12-BIT ANALOG-DIGITAL CONVERSION

is a single-ended measurement (referenced to ground). Alter-
natively, these channels can be used as a single differential
input (neither is ground referenced but there is no greater than
5 V between them). Channel 0 is +input, channel 1 is –input.

Related Topics: 8-bit A/D Conversion

Error Presentation: No errors presented. A CALL made to a
nonexistent ADC still returns a value on the stack, albeit one of
no meaning.

Example:
10 PRINT "This program prints an A/D conversion"
20 PRINT " from two single-ended inputs: Channel
 1 & 0"
30 INPUT"Measure and enter your VCC voltage
 (e.g., 5.12)"P
40 CALL 0F020H: REM THE FUNCTION CALL
50 POP V1,V0: REM GETTING THE RESULTS
60 PRINT USING(0),"Channel 1’s conversion count
 is",V1
70 PRINT " and the calculated voltage is",
80 PRINT USING(#.###), V1 * (P/4096)," volts"
90 PRINT USING(0),"Channel 0’s conversion count
 is",V0
100 PRINT " and the calculated voltage is",
110 PRINT USING(#.###), V0 * (P/4096)," volts"
120 PRINT "Hit a <cr> to make another conversion"
 : PRINT
130 IF (GET=0) THEN GOTO 130 ELSE GOTO 40

READY
>RUN
Program Output:

8

DOMINO-1™

This program prints an A/D conversion
 from two single-ended inputs: Channel 1 & 0
Measure and enter your VCC voltage (e.g., 5.12) ?
4.95
Channel 1’s conversion count is 254
 and the calculated voltage is 0.310 volts
Channel 0’s conversion count is 1259
 and the calculated voltage is 1.521 volts
Hit a <cr> to make another conversion

Syntax: CALL {address}
POP {variable}

Function: The CALL initiates an analog-to-digital conversion.
The result is presented on the stack to be POPed by the user.

Mode: Command, Run

Use: [single-ended channel 0]
CALL 0F080H
POP {variable}

Description: The processor’s Port1 pins (P1.7 *CS, P1.6 Data,
and P1.5 CLK) are used to access an externally connected
ADC0831 (DOMINO-1). The ADC0831 offers a single-ended
measurement (referenced to ground).

Related Topics: 12-bit A/D Conversion

Error Presentation: No errors presented. A CALL made to a
nonexistent ADC still returns a value on the stack, albeit one of
no meaning.

Example:
10 PRINT "This program prints an A/D conversion"

20 PRINT " from a single-ended input on Channel
 0"
30 INPUT"Measure and enter your VCC voltage
 (e.g., 5.12)"P
40 CALL 0F080H: REM THE FUNCTION CALL
50 POP V0: REM GETTING THE RESULTS
60 PRINT USING(0),"Channel 0’s conversion count
 is",V0
70 PRINT " and the calculated voltage is",
80 PRINT USING(#.###), V0 * (P/256)," volts"
90 PRINT "Hit a <cr> to make another conversion"
 : PRINT
100 IF (GET=0) THEN GOTO 100 ELSE GOTO 40

READY
>RUN

Program Output:
This program prints an A/D conversion
 from a single-ended input on Channel 0.
Measure and enter your VCC voltage (e.g., 5.12) ?
4.95.
Channel 0’s conversion count is 54
 and the calculated voltage is 1.044 volts.
Hit a <cr> to make another conversion

4.2 8-BIT ANALOG-DIGITAL CONVERSION

4.3 PULSE-WIDTH MODULATION

Syntax: PUSH {On time},{Off time},{Duration}
CALL {address}

where variable (On time) = integer 150–65535 counts
(Off time) = integer 150–65535 counts
(1 count = 1.085 µs)
(Duration) = integer 0–255 cycles
(0 = continuous)

and given that 1%–99% duty cycle pulses up to 60 Hz
50% duty cycle pulses up to 3 kHz

Function: Defines the on time (high), off time (low), and dura-
tion (# of complete cycles) for a PWM output signal. It also
starts the PWM output. A duration of zero means continuous
output. Two separate PWM outputs are available *INT0 uses

TIMER0 and T1 uses TIMER1.
WARNING: Using either of these functions disables any other
function using TIMER0, TIMER1, or INTERRUPT0.

BASIC commands using TIMER0: CLOCK1
TIMER1: PWM, LIST#, PRINT#
INTERRUPT 0: none

Mode: Command, Run

Use: [start PWM0 using TIMER0 and *INT0 as output]
PUSH 500,1500,0
CALL 0F060H

DOMINO-1™

9

[stop PWM0 immediately]
CALL 0F068H

[start PWM1 using TIMER1 and T1 as output]
PUSH 500,1500,0
CALL 0F064H

[stop PWM1 immediately]
CALL 0F06CH

Description: Using the PWM function requires MTOP to be
set to 3FFFH (although the function call sets this, the user
should be aware that any variable used prior to this call is de-
stroyed unless MTOP is preset to 3FFFH at the beginning of a
program).

TIMER interrupt vector locations (400BH–400DH and
401BH–401DH) and on time, off time, and duration values stor-
age locations (4200H–420BH) are set up in RAM. The PWM
function call sets up the TIMER counts alternating between
the on-time value and the off-time value on each TIMER over-
flow until the duration value has been decreased to zero.

A separate function call can be made at any time to imme-
diately shut down the PWM. Each on- and off-time count de-
fined is the number of 1.085-µs tics the routine delays before
changing state. The minimum count is 150 (150 × 1.085 µs) or
163 µs. The max count is 65535 or 71 ms.

Related Topics: PWM (BASIC command) The BASIC-1
Interpreter’s PWM command halts execution of the BASIC pro-
gram while it is being executed. PWM0 and PWM1 function
calls do NOT halt the execution of the BASIC program, but it

becomes a background task.
Error Presentation: No error are reported although any BA-
SIC command which uses the timers is disabled (see Function
description above).

Example: This example sets up both PWM outputs with
continously varying 1–99% duty cycles.

10 FOR Y=150 TO 14700 STEP 300
20 PUSH Y
30 PUSH 15000–Y
40 PUSH 0
50 CALL 0F060H
60 PUSH 15000–Y
70 PUSH Y
80 PUSH 0
90 CALL 0F064H
91 FOR Z=1 TO 50: NEXT Z
100 NEXT Y
110 FOR Y=14700 TO 150 STEP –300
120 PUSH Y
130 PUSH 15000–Y
140 PUSH 0
150 CALL 0F060H
160 PUSH 15000–Y
170 PUSH Y
180 PUSH 0
190 CALL 0F064H
191 FOR Z=1 TO 50: NEXT Z
200 NEXT Y
210 GOTO 10

READY
>RUN

Syntax: CALL {address} [Start measurement]

CALL {address} [Retrieve result]
POP {variable}

where variable (period count) = integer 0–65535
(0 = measurement started)
(1 = measurement in process)
(2 = overflow occured—signal too slow)
(60–65535 = counts between negative edges)
(1 count = 1.085 µs)
(period = 65 µs – 71 ms)
(frequency = 15 kHz – 15 Hz)

Function: The start measurement function call sets up the
edge-triggered input interrupts and timers used to measure
the period between two sucessive input edges. Two separate
input signals can be measured. Input *INT0 uses interrupt 0
and timer0 and input *INT1 uses interrupt 1 and timer1.
WARNING: Using either of these inputs disables any other func-
tion using the interrupts or timers. The timers and interrupts
may again be used after the function calls are complete.

BASIC commands using:
TIMER0: CLOCK1
INTERRUPT0: none
TIMER1: PWM
LIST#, PRINT# INTERRUPT1: ONEX1

Mode: Command, Run

Use: [Start a measurement on input *INT0]
CALL 0F070H

[Start a measurement on input *INT1]
CALL 0F074H

[Retrieve a measurement on input *INT0]
CALL 0F078H
POP P

[Retrieve a measurement on input *INT1]
CALL 0F07CH
POP P

4.4 PERIOD AND FREQUENCY

10

DOMINO-1™

Descripton: Using the PERIOD/FREQUENCY function re-
quires MTOP to be set to 3FFFH (although the function call
sets this, the user should be aware that any variable used prior
to this call is destroyed unless MTOP is preset to 3FFFH at the
beginning of a program).

External interrupt vector locations (4003H–4005H and
4013H–4015H), TIMER interrupt vector locations (400BH–
400DH and 401BH–401DH) and period count storage loca-
tions (420CH–420FH) are set up in RAM. The start period mea-
surement function call initializes the INTERRUPT and TIMER.
The retrieve measurement function call passes the measure-
ment status back to the user via the stack. The status is indi-
cated as follows:

POPed Value Meaning
0 waiting for input
1 measurement in process
2 overflow (input too slow or nonexistent)
other counts in 1.085 µs intervals.

Related Topics: none

Error Presentation: No errors reported (see Function descrip-
tion above).

Example:
10 PRINT "This program lets you use the
 frequency function"
20 PRINT "Apply the TTL frequency to pin *INT0
 and/or *INT1"
30 CALL 0F070H: REM PERIOD COUNT ON *INT0
 FUNCTION CALL
40 CALL 0F074H: REM PERIOD COUNT ON *INT1
 FUNCTION CALL
50 CALL 0F078H: REM RETRIEVE COUNT ON *INT0
 FUNCTION CALL

60 POP PC0: REM GET THE PERIOD COUNT
70 IF (PC0=2) THEN PRINT "The frequency is too
 low on *INT0": GOTO 130
80 IF (PC0=0.OR.PC0=1) THEN GOTO 50
90 P=PC0*1.085: REM PERIOD TIME CALCULATION
 FROM COUNT VALUE
100 PRINT "The period on *INT0 is",P," µs. The
 frequency is",
110 F=1/P*1000000: REM FREQUENCY CALCULATION
 FROM PC VALUE
120 PRINT F,” Hz”
130 CALL 0F07CH: REM RETRIEVE COUNT ON *INT1
 FUNCTION CALL
140 POP PC1: REM GET THE PERIOD COUNT
150 IF (PC1=2) THEN PRINT "The frequency is too
 low on *INT1": GOTO 210
160 IF (PC1=0.OR.PC1=1) THEN GOTO 130
170 P=PC1*1.085: REM PERIOD TIME CALCULATION
 FROM COUNT VALUE
180 PRINT "The period on *INT1 is",P," µs. The
 frequency is",
190 F=1/P*1000000: REM FREQUENCY CALCULATION
 FROM PC VALUE
200 PRINT F," Hz"
210 PRINT "Hit a <cr> to take another sample":
 PRINT
220 IF (GET=0) THEN 220 ELSE GOTO 30

READY
>RUN

Program Output:
This program lets you use the frequency
function
Apply the TTL frequency to pin *INT0 and/or *INT1
The frequency is too low on *INT0
The period on *INT1 is 2164.575 µs. The frequency is
461.9 Hz
Hit a <cr> to take another sample

4.5 PROGRAM EEPROM (PROGx)

Syntax: CALL {address}

Function: The BASIC program residing in RAM and the ap-
propriate header information (autostarting, baud rate, and
MTOP) is stored in EEPROM.

Mode: Command

Use: [PROG]
CALL 0FF00H

[PROG1]
CALL 0FF08H

[PROG2]
CALL 0FF10H

[PROG3]
CALL 0FF18H

[PROG4]
CALL 0FF20H

Description: These function calls act just like the BASIC-1
PROG commands. The BASIC commands are written for
EPROM. The EEPROM used here requires a different pro-
gramming algorithm. The PROG function call replaces the
BASIC PROG command and saves only the program. The re-
maining PROGx function calls are similar in function to the
BASIC commands, but the function calls all save the program
and the startup characteristics in a single call.

Related Topics: PROG, PROG1, PROG2, PROG3, and
PROG4 (all BASIC commands)

DOMINO-1™

11

Error Presenation:
ABORT, PROGRAMMING ERROR!

[EEPROM life exceeded]
ABORTED, ILLEGAL ACCESS ATTEMPT!

[storage space exceeded]
ABORTED, UNKNOWN RESULT CODE!

[unknown error]
ABORTED, NOTHING TO PROGRAM!

[no program in RAM]

Example:
[Type in your program:]
10 PRINT"Hello World!"

 [Type RUN to verify it executes properly:]
RUN

Hello World!

>READY

[Now type the function call for PROG2:]
CALL 0FF10H

[you should see:]
STORING PROGRAM...
PROGRAM STORED!

[Whenever the power is disconnected and reconnected you
should see:]
Hello World!

Syntax: [send registered BYTE]
PUSH {slave address * 100H + slave register}
PUSH {8-bit value}
CALL {address}
POP {16-bit value}

[retrieve registered BYTE]
PUSH {slave address * 100H + slave register}
CALL {address}
POP {16-bit value}

[send BYTE]
PUSH {slave address * 100H + 8-bit value}
CALL {address}
POP {16-bit value}

[retrieve BYTE]
PUSH {slave address * 100H}
CALL {address}
POP {16-bit value}

Function: Communication is attempted with an I2C device. An
8-bit value is passed to and from the device.

Mode: Command, Run

Use: where A=slave address
R=slave register
V=value to send
C=value retrieved

[send registered BYTE]
PUSH A*100H+R,V

CALL 0F128H
POP C

[retrieve registered BYTE]
PUSH A*100H+R
CALL 0F12CH
POP C

[send BYTE]
PUSH A*100H+V
CALL 0F120H
POP C

[retrieve BYTE]
PUSH A*100H
CALL 0F124H
POP C

Description: The address and register of the I2C slave device
is passed on the stack. If an 8-bit value is to be sent, it too
must be pushed onto the stack. A call is then made to send a
message using the I2C bus (P1.7 CLK and P1.6 DATA). The
routine returns a 16-bit value to the user on the stack. The
upper byte of the returned value is zero (000xxH) if the trans-
fer was sucessful. Otherwise, it is set to all 1s (0FFxxH). If the
function was to retrieve a byte, it is in the lower 8 bits of the 16-
bit return.

Related Topics: I2C Beeper, I2C Keypad, and I2C LCD

Error Presentation: The upper 8 bits of the received byte are
masked to all 1s if the transmission is unsucessful or 0s if all is
OK.

4.6 I2C BYTE TRANSFERS

12

DOMINO-1™

Example:
10 PRINT"Turn ON the beeper"
20 A=046H
30 V=0DFH
40 PUSH A*100H+V
50 CALL 0F120H
60 POP C
70 IF (C<>0) THEN GOTO 180
80 PRINT"Hit a key to turn it OFF"
90 G=GET
100 IF (G=0) THEN GOTO 90

110 V=0FFH
120 PUSH A*100H+V
130 CALL 0F120H
140 POP C
150 IF (C<>0) THEN GOTO 180
160 PRINT"Now it’s OFF"
170 END
180 PRINT"Error in I2C communications"
190 END

4.6.1 I2C BEEPER

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000110 and piezobeeper on bit 5.

Syntax: CALL {address}

Function: Bit 5 of the slave I/O expander is momentarily set
low to produce a short burst from an attached piezo-beeper.

Mode: Command, Run

Use: CALL 0F110H

Description: The preassigned I2C slave address 46H is writ-
ten to with a value of DFH to turn off bit 5. After a short delay, a
value of FFH is sent to turn bit 5 back on. The output bit can
sink 25 mA of current for, in this case, a piezoelectric beeper.

Related Topics: I2C Keypad, I2C LCD

Error Presentation: none

Example:
10 PRINT"Beep the beeper"
20 CALL 0F110H
30 PRINT"That’s it!"
40 END

DOMINO-1™

13

4.6.2 I2C KEYPAD

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000110 and input bits 0–4 from 74C922 data bits, input bit 7
from Q of 74HC74 clocked from grounded D by DAV from
74C922, and output bit 6 to set the 74HC74)

Syntax: [initialize]
CALL {address}

[hook into UI0/1 BASIC command]
CALL {address}

Function: The slave I/O expander is initialized by toggling
output bit 6 low and high to set the 74HC74. This clears the
DAV latch. The hook routines can be implemented to install
the keypad as the alternate console input device.

Mode: Command, Run

Use: [initialize]
CALL 0F100H

[hook into UI0/1 BASIC command]
CALL 0F108H

Description: To initialize the keypad, the preassigned I2C slave
address 46H is written to with a value of BFH to turn off bit 6. A
value of FFH turns bit 6 back on. The output bit sets a 74HC74
latch clearing any DAV which may have clocked the grounded
D input. The DAV signal is generated by a 74HC922 whenever
a key is pressed. The keyboard can be read through an I2C
read BYTE routine. If bit 7 is low, then the lower 4 bits contain
keypad data. The user must reinitialize the keyboard (clear the
DAV) after each key read.

Alternatively, and much easier, the second function hooks
the keypad into the alternate console input device. Using the
hook function requires MTOP to be set to 3FFFH (although the
function call sets this, the user should be aware that any vari-
able used prior to this call is destroyed unless MTOP is preset
to 3FFFH at the beginning of a program). Custom console in-
put vector locations (4033H–4035H) and custom console sta-
tus check vector locations (4036H–4038H) are set up in RAM.

Related Topics: I2C BYTE transfers, I2C LCD, UI0 and UI1
(BASIC commands)

Error Presentation: none

Example:
10 MTOP=03FFFH
20 PRINT"Initialize the Keypad"
30 CALL 0F100H
40 PRINT"Hook into the alternate console input"
50 CALL 0F108H
60 PRINT"Hit a key on the keyboard to swap to
 keypad input"
70 G=GET
80 G=GET: IF (G=0) THEN GOTO 80
90 PRINT: PRINT"Now swapping to keypad input"
100 UI1: REM CHANGE TO ALTERNATE CONSOLE INPUT
110 PRINT"Hit a key on the keypad to swap to
 keyboard input"
120 G=GET
130 G=GET: IF (G=0) THEN GOTO 130
140 PRINT: PRINT"Now swapping to keyboard input"
150 UI0: REM CHANGE TO PRIMARY CONSOLE INPUT
160 GOTO 60

14

DOMINO-1™

4.6.3 I2C LCD

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000010 and output bit 0–3 to the (LM034—4x20) LCD data
bits 4–7, output bit 4 to the LCD RS pin, and output bit 5 to the
LCD E pin).

Syntax: [initialize]
CALL {address}

[clear display & home cursor]
CALL {address}

[display $(0) string]
CALL {address}

[display a character]
CALL {address}

[hook into UI0/1 BASIC command]
CALL {address}

Function: The LCD must be initialized through the slave I/O
expander. This sets up the LCD in nibble mode with a 4 × 7
character matrix and invisible cursor. The LCD is cleared and
the cursor set to row1 column 1. Once initialized, the LCD can
be cleared and cursor sent home at any time. The first string,
$(0), can be directed to the LCD without using console redi-
rection (UO1).

If you choose to use console redirection (UO1), the char-
acters are handled one at a time. Console redirection can be
invoked once the hooks are installed for the BASIC UI1 com-
mand.

Mode: Command, Run

Use: [initialize]
CALL 0F030H

[clear display & home cursor]
CALL 0F038H

[display $(0) string]
CALL 0F040H

[hook into UI0/1 BASIC command]
CALL 0F050H

Description: To initialize the LCD, the preassigned I2C slave
address 42H is used as an output port. The initialization data
is sent to the output port to place the LCD in nibble mode with
a 4 × 7 character matrix and invisible cursor. The clear display
and home cursor function is called to complete the initializa-
tion. Clearing the display and homing the cursor can be used
any time after the LCD has been initialized. Since the LCD
does not clear from the end of a print string to the end of the
LCD line, you will find this function call necessary to keep the
screen clean.

Displaying a string is easy without console redirection. The
first string, $(0), can be displayed on the LCD by using a simple
function call. This displays all characters in the string (normally
unprintable characters may be displayed as Kana characters).

Alternatively, and much easier to use, the console ouput
device can be hooked in as the secondary or alternate output

device. The use of the BASIC U01 command redirects all out-
put automatically to the LCD display. Once hooked, charac-
ters are printed on a character by character basis. Characters
between 20H and 7FH are displayed. Those above 7FH are
used as cursor control. A <cr> moves the cursor to the begining
of the next (or first) line. Using the hook function requires MTOP
to be set to 3FFFH (although the function call sets this, the
user should be aware that any variable used prior to this call is
destroyed unless MTOP is preset to 3FFFH at the beginning
of a program).

Custom console output vector locations (4030H–4032H)
and custom list@/print@ vector locations (403CH–403EH) are
set up in RAM.

NOTE: LCD output routines are considerably slower than
console output, therefore care must be taken when using redi-
rected (UO1) output to the LCD while using the BASIC-1
interpreter’s INPUT $(0) command. Input characters can be
lost while the previous character’s ECHO is being displayed
when you run above 4800 bps. You can either use a data rate
of less than 9600 or redirect console output to the primary (se-
rial port) until after the INPUT statement. Then, when input is
complete, redirect the console output to the LCD and PRINT
$(0).

Related Topics: I2C BYTE transfers, I2C Keypad, U01 and UO0
(BASIC commands)

Error Presentation: none

Example:
[direct string output to the LCD]
10 MTOP=03FFFH
20 STRING 82,80
30 PRINT"Initialize the LCD"
40 CALL 0F030H
50 PRINT"Now all input strings will be displayed
 on the LCD"
60 INPUT $(0)
70 CALL 0F040H: REM PRINT $(0) TO LCD
80 GOTO 60

[redirecting the PRINT command to the LCD as the sec-
ondary console output device]
10 MTOP=03FFFH
20 STRING 82,80
30 PRINT"Initialize the LCD"
40 CALL 0F030H
50 PRINT"Hook into the secondary console output
 (LCD)"
60 CALL 0F050H
70 PRINT"Now all further output will be displayed
 on the LCD"
80 INPUT $(0)
90 UO1: REM CHANGE TO SECONDARY CONSOLE OUTPUT
 DEVICE
100 PRINT $(0)
110 UO0: REM CHANGE TO PRIMARY CONSOLE OUTPUT
 DEVICE
120 GOTO 70

DOMINO-1™

15

4.7 UTILITIES VERSION NUMBER

Syntax: CALL {address}

Function: The CALL initiates a sign-on message displaying
the version number of the utilities presently installed.

Mode: Command, Run

Use: CALL 0FFF0H

Description: Version identification, which is embedded in the
utilities, is sent to the active console output.

Related Topics: none

Error Presentation: none

Example:
READY
>CALL 0FFF0H

Program Output:
DOMINO FLASH EXTENSION x.xx IS RESIDENT

5.0 CONTROLLING I/O BITS DIRECTLY
Since it isn't possible to directly set or reset bits on Port 3

from BASIC-1, it is necessary to call short machine language
routines to do the job. The routines consist of three bytes.
The first is either a SETB instruction (D2) or a CLR instruc-
tion (C2). The second specifies a bit address. Finally, the

third is a RET instruction (22).
The following table details the necessary routines for

each of the Port 3 bits. The program example shows how to
insert the routines into memory from BASIC-1 and how to
call them.

Pin Bit Name To Set To Clear

P3.0 B0 RxD D2 B0 22 C2 B0 22
P3.1 B1 TxD D2 B1 22 C2 B1 22
P3.2 B2 Int 0 D2 B2 22 C2 B2 22
P3.3 B3 Int 1 D2 B3 22 C2 B3 22
P3.4 B4 T0 D2 B4 22 C2 B4 22
P3.5 B5 T1 D2 B5 22 C2 B5 22

NOTE: All data in BASIC-52 must begin with a numeric value
or else it is interpreted as a variable. (ex: xby(3200h) = 0D2)

16

DOMINO-1™

Example:
The following code is an example for using INT 1 (P3.3) as

an output bit.

100 MTOP=31000: REM Set MTOP Lower
110 XBY (32000)=0D2H: XBY(32001)=0B3h:
 XBY(32002)=022H
120 REM Put INT 1 Set Program at 32000

150 XBY(32100)=0C2H: XBY(32101)=0B3H:
 XBY(32102)=022H
160 REM Put INT 1 Reset Program at 32100
200 Call 32000: REM INT 1 On
210 Call 32100: REM INT 1 Off
222 Goto 200

Note: RAM locations and assembly code can be expressed
in decimal, hex, or both.

The utilities reside in the uppermost portion of the memory
map. The utilities are placed in nonvolatile memory so they
remain along with your saved autostarting BASIC program,
even after power has become disconnected. The user can take
advantage of updated utilities (when available) by simply re-
loading them. This is a two-step process.

First, a utilities loader program (LOADUTIL.BAS) is en-
tered into DOMINO. When this program is run, you are
prompted to download the actual utilities hex file
(UTIL_xxx.HEX). The LOADUTIL.BAS program reads in each
paragraph of the hex file, converting and storing it in RAM.

When the hex file has been read, “load sucessful,” “call ad-
dress = xxxx,” and “total checksum = xxxxx” messages are
displayed. The total checksum should match the one included
in the UTIL_100.DOC file. This file also contains any last-minute
information you should be aware.

Second, if you have verified that all is correct, you may
transfer the utilities using the direct command “CALL xxxx” as
displayed in the above message. You get transfer status and a
sign-on banner when the utilities have been transfered into
nonvolatile EEPROM.

6.0 UPDATING THE DOMINO UTILITIES

7.0 GETTING STARTED
Although you can use any communication software with

DOMINO, Host-1 is a convenient and friendly interface between
your PC and DOMINO. Host-52 can be used on any DOS-com-
patible PC with 640 KB of conventional memory. To use Host-
52 with DOMINO, you need two serial ports. COM1 for the se-
rial connection to DOMINO and COM2 for your serial mouse.
(If you use COM1 for your serial mouse, you may select an
alternate COM port for the DOMINO through the Serial Option
of the Main Menu.)

Connect the DOMINO hardware to the PC’s serial port
and turn on the power to the DOMINO. At this point, unless
you already have an autostart program in DOMINO, it waits to
receive a space character. (If you are using a simple comm
program like Procomm to communicate with DOMINO, remem-
ber that DOMINO sets the baud rate when a space character
is entered. Any other entry confuses DOMINO. You also need
to power DOMINO off and on again if the first character
DOMINO receives is NOT a space.)

From the DOS command line, type in Host-52 from the in-
stalled directory. Host-52 sets up the screen into windows. The
top window is the editing window where you input and revise
your programs. The middle window is the console output win-
dow where you see DOMINO’s output. The narrow bottom win-
dow is the console input window where you can type direct
commands to DOMINO. You can activate either the editor (top
window) or the console (bottom two windows) by clicking on
them with the mouse.

Host-52 automatically sends out a space character in an
attempt to make contact with the DOMINO. You receive an OK

message if all is well.
Click on the top window. Host-52 automatically numbers

your BASIC program’s lines. Enter this single line where Host-
52 has entered the line number 10.

10 PRINT"Hello World"

Now click on the console window, then the PROGRAM
item of the menu bar, and then on SEND ALL. Host-52 sends
the BASIC code from its editor to DOMINO.

Click on the RUN item on the menu bar and then on START.
Host-52 passes the run command to DOMINO and your pro-
gram executes (out of RAM).

Hello World

READY
>

You can start the program from the console input window by
typing:

RUN<cr>

Hello World

READY
>

This can be saved as an autostart program by typing:

DOMINO-1™

17

CALL 0FF20H<cr>

SAVING PROGRAM...
PROGRAM SAVED!

Remove power from the DOMINO and then power it back up.
The program automatically runs.

Hello World

READY
>

Please read the Host-52 Develop System for BASIC-1 CPUs
for complete information on using Host-52, the BASIC-1 Pro-
gramming for more on BASIC’s command syntax, and this
manual for more on using the DOMINO Utilities.

Devices sold by Micromint are covered by the warranty and patent indemnification provi-
sions appearing in its Terms of Sale only. Micromint makes no warranty, express, statutory,
implied, or by description regarding the information set forth herein or regarding the free-
dom of the described devices from patent infringement. Micromint makes no warranty of
merchantability or fitness for any purposes. Micromint reserves the right to discontinue
production and change specifications and prices any time and without notice. This product
is intended for use in normal commercial applications. Applications requiring extended
temperature and unusual environmental requirements, or applications requiring high reli-
ability, such as military, medical life support or life-sustaining equipment, are specifically
not recommended without additional processing by Micromint for such application.

18

DOMINO-1™

APPENDIX 1.0

two twisted-pair transmission lines (i.e., Tx+/Tx–/Rx+/Rx–) of-
fering long transmission paths and noise-cancelling techniques.
This distance is typically 4000 feet. This connection is shown
in Figure 2.

RS-485 is similar to RS-422 with the exception that it uses
a single twisted pair in a half-duplex arrangement (i.e., +/-).
This means data transmissions must use the same twisted-
pair path to travel in both directions, requiring a simple proto-
col of only one unit seizing the transmission pair at a time while
all others listen. This connection is shown in Figure 3.

1.1 SAMPLE APPLICATION: COMMUNICATIONS

DOMINO-1 can communicate with other serial devices at
up to 19,200 bps. It can be connected in one of three configu-
rations: RS-232A, RS-422, or RS-485. DOMINO-1’s RS-232A
output can be used with most full-duplex PC-type serial de-
vices which normally handle RS-232C provided they can rec-
oncile receiving the lower-voltage transmit level of RS-232A.
This three-wire (Tx/Rx/GND) RS-232A connection is created
by using the RS-422 input receivers as simple level-shifting
inverters as shown in Figure 1.

RS-422 is an alternate full-duplex connection which uses

20

1

12
11

Bottom view

1

+5 V (regulated)
Ground

RS-422

13

1

Rx–

Rx+

Tx–

Tx+

Receive pair to transmitter

Transmit pair to receiver

10

Figure 2— Typical RS-422 connections

20

1

12
11

Bottom view

+5 V (regulated)
Ground

RS-485

13

1 –

+

Twisted pair to other
multidrop units

10

20

1

12

11

Bottom view

1

13

14

25

+5 V (regulated)
Ground

RS-232A

Note: RS-485 requires master-slave protocol and direction control

Figure 3— Typical RS-485 connectionsFigure 1— Typical RS-232A connections

DOMINO-1™

19

P1.6, and P1.5 as described in the pinout listing. When an
ADC is connected, these port lines shared functions. The user
must take care not to confuse functions with random outputs
to these lines.

The example below shows ADC connections for using
DOMINO-1A with the optional internal ADC or DOMINO-1 with
an external ADC attached.

1.2 SAMPLE APPLICATION: ANALOG INPUT MEASUREMENT

The DOMINO-1A contains an optional 2-channel, 12-bit
A/D converter. The converter is a Linear Technology LTC1298.
It is mounted internally in the A version, but can be exter-
nally connected to a regular parallel I/O model DOMINO-1.
Both DOMINO-1 and DOMINO-1A firmware support ADC calls
for 8-bit (ADC0832) and 12-bit (LTC1298) dual-channel ADC
devices.

In both applications, the ADC chip is connected to P1.7,

20

1

Bottom view

T300
temperature

probe

T300
temperature

probe

+12

+12

+5

12-bit ADC = 1.2 mV/bit (.12°F) T300 — Micromint’s Fahrenheit probe
-40°F (2.1 V) – +230°F (4.8 V)

10 mV/°F

19

18

Figure 2— Typical connections for using DOMINO-1A with its internal ADC

20

1

Bottom view

ADC0832

+5

8

4

IN0

IN1

Vcc

GND

CS

CLK

SOUT

SIN

T300
temperature

probe

T300
temperature

probe

+12

+12

2

3

+5

2

3

4

1

7

6

5

8-bit ADC = 20 mV/bit (2°F) T300 — Micromint’s Fahrenheit probe
-40°F (2.1 V) – +230°F (4.8 V)

10 mV/°F

Figure 1— Typical connections for using DOMINO-1 with a user-supplied external ADC

20

DOMINO-1™

1.3 SAMPLE APPLICATION: NETWORKING DOMINO-1

Multiple DOMINO-1s can be used in a networked multidrop
configuration using only a single twisted pair for communica-
tion. Network protocol requires that only one unit is allowed to
transmit on the line at a time. All other units are “listening” in
receive mode.

This is accomplished by requiring one DOMINO-1 or a
device like a PC to be the net master. The master talks to any

slave unit either passing information to it or requesting infor-
mation from it. The slaves must never answer the master until
a response is requested. The master then relinquishes the net
to that slave for the response and regains the net when the
slave is finished. This arrangement enables multiple control-
lers to work together gathering numerous inputs and control-
ling innumerable outputs, independent of the system’s size.

20

1

12 11

Bottom view

+5
Domino #3: Slave

13

10

T300
temperature

probe

+12

19

Beeper

4
3

2

+

–

20

1

12 11

Bottom view

+5
Domino #2: Slave

13

10

T300
temperature

probe

+12

19

Beeper

4
3

2

+

–

100Ω

20

1

12 11

Bottom view

+5
Domino #4: Slave

13

10

T300
temperature

probe

+12

19

Beeper

4
3

2

+

–

Twisted pair

100Ω

20

1

12 11

Bottom view

+5
Domino #1: Master

13

10

2

+

– +5

1k

+12
Relay 0

+12
Relay 1

+12
Relay 2

3
4

1k

DOMINO-1™

21

APPENDIX 2.0
2.0 DOMINO DEVELOPMENT BOARD

Packing so much power into DOMINO’s tiny package re-
ally keeps your finished product small and light weight. This
may, however, present a problem in the development phase of
your product. Micromint offers the DOMINO Development
Board as a tool to help you reach your goal in the shortest
possible time.

The development board offers regulated 5-V power, com-
munication connection, an external LTC1298 ADC (for use with
DOMINO-1’s without internal ADC, and a prototyping area.

Simply add a regulated or unregulated power supply (7.5–12
V) and an RS-232 cable (DB-9M/DB-9M) to your PC’s serial
port. Any generic communications program may be used to
talk to DOMINO (pressing the space bar as the first character
sent enables DOMINO to automatically detect the baud rate in
the range of 300–19,200). Micromint offers Host-52, a combi-
nation editor and communications program specifically de-
signed for use with 80C52 BASIC systems.

2.1 DOMINO DEVELOPMENT BOARD POWER SUPPLY

Domino requires very little current to operate. Any regu-
lated or unregulated 7.5–12 VDC supply of at least 100 mA
can be used. The DOMINO development board accepts a 2.5-
mm power plug (available on most small wall transformer power
supplies). DOMINO's actual requirements are typically less than
15 mA, but you will probably want some additional power for

external circuitry.
NOTE: Make sure your power supply uses the center con-

ductor of the power plug as ground. Applying reverse voltage
to the DOMINO development board damages the regulator and/
or the DOMINO module.

2.2 DOMINO DEVELOPMENT BOARD COMMUNICATIONS

2.2.1 RS-232A COMMUNICATIONS

Communications is set for RS-232A from the factory.
This setting is necessary for communicating with a PC (us-
ing no additional equipment besides a DB-9M to DB-9F
cable).

NOTE: RS-232A is characterized as a ±5-V bipolar sig-
nal (as opposed to RS-232C at ±12 V). Drivers and receiv-
ers are actually RS-422 and the interface is an RS-423
connection (single ended to differential).

Analog input
from J4

1

2

1

2

1

2

10

7

4

1

Analog input
from J2

JP1

JP2

JP3

JP4

RS-232A

Transmitter pull-up

Transmitter pull-down Transmitter termination

Receiver pull-down Receiver termination
RS-422/485

RS-422-485

RS-422/485

RS-422-485

Receiver pull-up

RS-232A

RS-232A

RS-232A

RS-232A

Domino RS-232A Voltage output is 0-5V only.

22

DOMINO-1™

2.2.2 RS-422 COMMUNICATIONS

RS-422 communications requires two twisted pairs. One
pair connects the console transmitter to DOMINO’s receiver
while the second pair connects the console receiver to
DOMINO’s transmitter.

RS-422 uses two unidirectional data paths—one path for
each direction. The data transmission is differential, enabling
the noise picked up on the pairs to cancel itself out. Each
twisted pair should have termination enabled at each end of
the line. Pull-up and pull-down termination may be required,
but only at one end of each pair.

Analog input
from J4

1

2

1

2

1

2

10

1

Analog input
from J2

JP1

JP2

JP3

JP4

RS-422

Transmitter pull-up

Transmitter pull-down Transmitter termination

Receiver pull-down Receiver termination
RS-422/485

RS-422-485

RS-422/485

RS-422-485

Receiver pull-up

RS-232A

RS-232A

RS-232A

RS-232A

2.2.3 RS-485 COMMUNICATIONS

RS-485 communications requires one twisted pair to con-
nect the console to DOMINO. RS-485 uses one data path, so
the drivers at each end must NOT be enabled at the same
time. The user is responsible for this rule NOT being broken.

The easiest protocol to follow is a master/slave(s) rela-
tionship, where the slaves DO NOT enable their transmitter
(respond) unless the master asks them to. The data transmis-
sion is differential allowing picked up noise to cancel itself out.

The twisted pair should have termination enabled at each
end of the line. Pull-up and pull-down termination may be re-
quired, but only at one end of the pair.

Analog input
from J4

1

2

1

2

1

2

10

1

Analog input
from J2

JP1

JP2

JP3

JP4

RS-485

Transmitter pull-up

Transmitter pull-down Transmitter termination

Receiver pull-down Receiver termination
RS-422/485

RS-422-485

RS-422/485

RS-422-485

Receiver pull-up

RS-232A

RS-232A

RS-232A

RS-232A

RS-232A connection is made using a DB-9F to DB-9M
cable between the PC’s serial port and the DB-9F (J3) on the
DOMINO development board.

RS-422 connections are twisted wire pairs connected to
each set of screw terminal blocks on the DOMIMO develop-
ment board. Connect the console’s transmitter (+) to DOMINO’s
screw terminal Rx (+) at T1 and the console’s transmitter (–) to
DOMINO’s screw terminal Rx (–) at T1. Connect the console’s
receiver (+) to DOMINO’s screw terminal Tx (+) at T2 and the

2.2.4 COMMUNICATION CONNECTIONS

console’s receiver (–) to DOMINO’s screw terminal Tx (–) at
T1.

RS-485 connections are a single twisted pair connected
to both sets of screw terminal blocks on the DOMINO develop-
ment board. Connect the twisted wire’s (+) lead to both of
DOMINO’s Tx and Rx (+) screw terminals on T1 and T2. Con-
nect the twisted wire’s (–) lead to both of DOMINO’s Tx and Rx
(–) screw terminals on T1 and T2.

DOMINO-1™

23

2.3 DOMINO CONNECTIONS

Except for communications connections, all pins on the
DOMINO are brought out to connector J2. If a 2 x 10 square-
pin header is used in J2, a ribbon cable plugged onto J2 has
the same signal pinout as if it were plugged onto DOMINO
directly. This enables any external circuitry you’ve developed
for DOMINO to be used along with the DOMINO development
board.

 If you choose to use the prototyping area on the DOMINO
development board, you can access to DOMINO’s I/O signal
at J2.

 Analog input signals can come in through J2 or the ana-

DOMINO-1A contains a 2-channel 12-bit A/D converter.
For those of you who have purchased a DOMINO-1 without
the internal ADC, the DOMINO development board gives you
access to an external 2-channel 12-bit ADC using an LTC1298.
The utility routines within DOMINO can access this external
ADC as if it were installed internally.

The ADC inputs on the DOMINO development board are
available at two locations. The actual input from J2 or J4 is

log input connector J4. Choose the appropriate input path us-
ing JP1. For jumpers toward the edge of the board on JP1,
select analog input from connector J2. For jumpers away from
the edge of the board on JP1, select analog input from con-
nector J4.

 Jumper J5 offers connection between the development
board’s 5-V power and the power pin on J2. You may wish to
run your external circuitry from the development board’s power
or vice versa. Power is NOT connected between the two sys-
tems unless you determine it necessary.

2.4 ANALOG-TO-DIGITAL CONVERTER

selected through JP1. Input protection is installed on the ADC
inputs consisting of a low-pass filter and protection diodes to
VCC and ground.

NOTE: When using a DOMINO with internal ADC, please re-
move any external ADC.

Here’s a silkscreen of Domino’s Development
Board. The development board is used to
make it easy to connect the Domino module
to external devices during product
development.The schematic is on page 23.

24

DOMINO-1™

SCHEMATIC FOR DOMINO-1
DEVELOPMENT BOARD

Intel Hex to
BASIC Data
Statement
Translator

Jeff Bachiochi

get a ton of ques-
tions each month

(by both phone and E-
mail) about using masked

BASIC-52 on the 8052 microcontroller.
The ever-increasing interest supports
my claim that BASIC offers a familiar
and friendly platform to learn embed-
ded control. To the seasoned veteran,
it also provides an inexpensive devel-
opment platform.

The whole thing started back in
1984 when Intel masked an 8-KB con-
trol-oriented BASIC interpreter, called
BASIC-52, into an NMOS 8052AH
DIP-style microcontroller. While Intel
no longer sells the chip, Micromint
continues to offer BASIC-52 masked
into low-power 8OC52 DIP and PLCC
packages.

with on-chip BASIC-52, writing
applications is a snap. No special com-
pilers or assemblers are needed. You
just attach a terminal (or PC terminal
emulator) and type the lines of BASIC
in directly. The results can be stored
and executed immediately right there
on the target system.

Debugging the application is also
painless since all variables can be dis-
played and BASIC lines edited at any
time. For the majority of applications,
BASIC is all you need to collect, trans-
form, or redirect data.

Of course, no single programming
language fits all control applications.
What a BASIC interpreter brings in
ease of use and program development,
it compromises in execution speed and
hardware to BASIC interfacing.

THE HARD FACTS
The 8031 core processor has four 8-

bit I/O ports. In an 8052 processor

with the masked BASIC, Port0 and
Port2 are used for the external address/
data bus. All eight bits on Port1 are
available through direct BASIC com-
mands. The bits on Port3 have mul-
tiple functions and are available, but
only through assembly instructions or
assembly routines called from BASIC.

Many applications don’t need more
than eight I/O bits. However, if you
need more, you can add external I/O
peripheral chips. These can be easily
accessed using traditional PEEK and
POKE-type BASIC commands.

Some peripherals require interrupts
for tasks which need to take prece-
dence over the BASIC program flow.
To facilitate this, BASIC-52 can di-
rectly respond to one of the two 803 l-
core external interrupts. It also can
support a l-s tic clock for interrupts
based on elapsed time. The interrupt
servicing speed remains that of BASIC.

THENEEDFORSPEED
When the execution speed of a BA-

SIC application program becomes
time-critical, consider supplementing
it with lower-level assembly language
for speed-sensitive tasks. The typical
execution time for a line of BASIC-52
is 230 ms, depending on the com-
mand. FOR/NEXT loops are the fastest
while P R I NT statements take consider-
ably longer than the average.

Although assembly language ex-
ecutes in microseconds, it generally
takes hundreds of lines of code to ac-
complish what a single line of BASIC
can do.

On the other hand, task-specific
assembly-language code (e.g., reading
and storing A/D conversions) is much
faster than interpreted BASIC (for a
compiled BASIC the difference is not
as significant).

CALL OF THE WILD
So, I contend that you should use a

BASIC interpreter whenever and wher-
ever it makes sense. When you need
more execution speed, consider com-
piled BASIC or callable task-specific
assembly language routines.

The BASIC-52 CALL 4200H state-
ment saves a pointer to the next line of
BASIC code on the stack and then
jumps blindly to the address you give

#67 February 1996 Circuit Cellar INK

it (in this case, 4200H). The pro-
cessor now expects to fetch an
assembly-language opcode to ex-
ecute.

That’s how your assembly
routine gains control from BASIC.
When your routine has finished,
the R ETurn opcode returns control
to BASIC. The pointer to the next
line of BASIC is popped off the
stack and execution of the BASIC
application continues.

I I EPROM

MTOP

8000H__________
7FFFH BASIC’s

variables
clrow down

b) OFFFFH

r-l

EPROM

8000H _______ __
MTOP 7FFFH

Let’s assume that all you need
to do is set and clear an I/O bit
normally unavailable to BASIC,
like Tl (P3.5). First, you need a
place in memory to store the rou-
tine. You might want to place the
routine in ROM above the space
where the BASIC program resides
in autostart mode.

Assembly
routine

BASIC’s
arrays

grow up
- - SRAM

End of BASIC varies
with program size

0
BASIC

Redirected
JUMP vectors

Lowered MTOP

End of BASIC varies
with program size

SRAM

There’s one problem with this
solution. You now have two pro-
grams which must be loaded prop-
erly, one BASIC and the other
assembly language. While this may not
sound like much of a problem, it can
be a bookkeeping nightmare for longer
programs, especially if you forget to
keep the files together for easy mainte-
nance.

Start of BASIC
application program

OOOOH

Figure 1-a) Af powerup, BASlC puts variable storage as high in RAM as possible. b) Modifying MOP protects a portion
of memory for use by assembly language routines.

RAM from 200H upward. As the first
statement, you need to add a line to
protect some memory for the assem-
bly-language routine.

these locations, I started my code at
4200H.

I suggest an alternative approach.
Try keeping the assembly routine as
part of the BASIC application program
using DATA statements. While this
approach involves an extra step to
protect the necessary RAM space and
poke the routine into memory each
time the application is run, the process
is quite straightforward. Just look.

This goal is accomplished by setting
the MT0 P variable to an address lower
than that set in the power-up initial-
ization. Let’s use 3FFFH, to give you
plenty of protected space.

Let’s try some something simple
like turning on or off bit B5H (P3.5
Tl), which you can’t do directly from
BASIC. You don’t need an assembler
for something this simple. It only
requires two opcodes: a S ETB (or C L R)
instruction and a RETurn.

10 MTOP=3FFFH

Notably, if your assembly-language
routine were only three bytes long (and
didn’t require the use an interrupt),
you would only have to protect three
bytes(l0 MTOP=7FFCH).

By referring to the micro’s data
book, you can find the correct bytes for
setting and clearing a bit. You can
place them into DATA statements like
this:

When you power up the 8OCS2
platform, you start out with an allo-
cated address space like that in Figure
la. The processor has measured the
amount of RAM you have in the sys-
tem and assigns it to the variable MT0 P
(let's assume MT0 P = 7FFFH for a
32.KB SRAM).

With MT0 P reassigned to 3FFFH,
you now have the address space allo-
cated as in Figure lb. Although you
may not require the interrupt jump
vectors which start at 4000H, I always
protect them but leave them free of
code. You may need them eventually.
(More on this later.) To stay clear of

10000 REM Set I/O bit Tl
10010 DATA OD2H, OB5H:

REM SETB Tl
10020 DATA 022H: REM Return
10030 REM Clear I/O bit Tl
10040 DATA OC2H, OB5H:

REM CLR Tl
10050 DATA 022H: REM Return

Begin by typing in (or downloading)
your BASIC-52 application. It fills The first data byte, D2H, is the

assembly-language
opcode for setting an
I/O bit. The second
byte, R5H, is the bit
address where the

: 20 4200 00 ~~ 7A operation is to be

Figure 2-a) A raw line of Mel hex looks like a jumble of characters. b) The line separated into its six major parts-start character, data performed. The
length, load address, mode, data, and checksum-becomes easier to deal with. source code for this

#67 February 1996 Circuit Cellar INK

opcode follows in a remark statement
for documentation purposes only.

In the second statement, 22H is an
opcode which returns control (in this
case, to BASIC]. This hand-coding
method can be used when there is
little chance for error.

You’re welcome to hand-code larger
routines, but be advised that it’s ex-
tremely easy to miscode a statement,
especially one with relative jumps and
such. Do it as a exercise, and back it
up with output from an assembler. It’s
bad enough when your routine doesn’t
run due to an error in logic. Don’t add
coding errors to your debugging ses-
sion!

Now, all you need to do is get these
six bytes into protected RAM where
they’ll be ready for you to call them.
I’ve suggested using 4200H as the
starting address. So, you need a BASIC-
52 routine which pokes the data bytes
into RAM at 4200H using the X B Y
statement. You can use a routine like
this:

20 FOR X = 4200H TO 4205H
30 READ V
40 XBY(X) = V
50 NEXT X

The FO R/N E X T loop assigns 4200H
to variable X It reads a byte and places
it into address location X. The address
is incremented, and the read-and-store
is repeated until X exceeds 4205H.

Once the data has been stored, it
remains in RAM until something over-
writes it or the power is cycled off and
on. Your BASIC application can CALL
4200H toset Tl and CALL 4203H to
clear Tl.

You can even make the calls from
the command-line prompt to test
them. You quickly discover that if you
make a call to a location which either
has no routine or has a miscoded rou-
tine, anything can ,happen.

Anything can include totally lock-
ing up the system, so you may wish to
both check your routine carefully and
make sure it’s there before you call it
(at least the first time). At a minimum,
at least ensure the first byte at the
location you call is correct.

You can also sum all the code you
placed in RAM and compare the total

Listing l--This program, wriffen in a generic PC BASIC, translates an Mel hex file into an 80C52 BASlC
program and loads the Mel hex data info SRAM.

10 CLS
2 0 FLAG=0
30 REM This program prompts for an Intel hex file name,
40 REM reads the file in, and creates an output file. The
50 REM file can be appended to a 8OC52 BASIC program to load your
60 REM assembly routine into SRAM (located in combined
70 REM Data/Code space) for execution there.
80 1NPUT"What is the Intel hex filename? ",A$
90 OPEN A$ FOR INPUT AS i/l
1oc
1 1 0
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

PRINT
PRINT"The output file will be called DATA.BAS."
1NPUT"What line number should it begin with? ",LINENUMBER
B$ = "DATA.BAS"
OPEN B$ FOR OUTPUT AS 112
IF EOF(1) THEN O$ = II": TEMP=LINENUMBER: GOT0 970
ON ERROR GOT0 950
INPUT i/l, I$
IF (MID$(I$,l,l) <> "."I THEN GOT0 930
PAIRCOUNT = VAL("&H"+MID$(I$,Z.Z))
LOADADDRESS = VAL("&H"+MID$(I$.4,4))
GOSUB 610
MODE = VAL("&H"+MID$(I$,8.2))
IF (MODE<>0 AND MODE<>11 THEN PRINT"Warning, mode must be 00"
IF (MODE=11 THEN PRINT"End of File"
FOR X=10 TO lO+(Z*(PAIRCOUNT-1)) STEP 2
IF (BYTECOUNT> THEN BYTECOUNT = 0: GOSUB 890:
LINENUMBER = LINENUMBER+lO

IF (BYTECOUNT= THEN 0s = II": TEMP=LINENUMBER: GOSUB 390:
GOSUB 580

O$ = O$ + 1, 0" + MID$(I$,X,2) + "H"
TOTALSUM = TOTALSUM + VAL("&H"+MIDB(IB.X.Z))
IF (BYTECOUNT<> THEN 08 = 08 +)1,"
BYTECOUNT = BYTECOUNT + 1
CHECKSUM = VAL("&H"+MID$(I$.10+2*PAIRCOUNT,2))
FOR COUNT = 2 TO 10+(2*(PAIRCOUNT-1)) STEP 2
CHECKSUM = CHECKSUM + VAL("&H"+MID$(I$,COUNT,2))
NEXT COUNT
IF (CHECKSUM AND 255) <> 0 THEN PRINT"Checksum error"
NEXT X
GOT0 150
REM Place the line number digits into a string
BLANKFLAG = 0
IF (TEMP<lOOOO) THEN GOT0 440
TEMPINTEGER = INT(TEMP/lOOOO): 08 = O$ + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOOOO: BLANKFLAG = 1
IF (TEMP<lOOO) THEN GOT0 470
TEMPINTEGER = INT(TEMP/lOOO): O$ = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOOO: BLANKFLAG = 1: GOT0 480
IF (BLANKFLAG= THEN O$ = 08 + "0"
IF (TEMP<lOO) THEN GOT0 510
TEMPINTEGER = INT(TEMP/lOO): 08 = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOO: BLANKFLAG = 1: GOT0 520
IF (BLANKFLAG= THEN O$ = 08 + "0"
IF (TEMP<lO) THEN GOT0 550
TEMPINTEGER = INT(TEMP/lO): O$ = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lO: BLANKFLAG = 1: GOT0 560
IF (BLANKFLAG= THEN 08 = O$ + "0"
O$ = 08 + CHR$(TEMP+48)
RETURN
REM Add the word "DATA" to the string
O$ = 08 + " DATA '
RETURN
REM Track the start and finish address for each,segment
IF (FLAG<>01 THEN GOT0 650
START = LOADADDRESS: FINISH = LOADADDRESS + PAIRCOUNT 1:

#67 February 1996 Circuit Cellar INK

Listing P-continued

640 RETURN
650 IF (FINISH+l=LOADADDRESS) THEN FINISH = FINISH + PAIRCOUNT:

RETURN
660 GOSUB 690
670 FLAG = 0
680 GOT0 610
690 REM Append the loading routine for the DATA statement segment
700 IF (RIGHT$(O$,l)=", "1 THEN 08 = MID$(O$,l,LEN(O$)-1)
710 IF (RIGHT$(O$,l)<>" "1 THEN GOSUB 890:

LINENUMBER = LINENUMBER + 10
720 08 = IIn: TEMP = LINENUMBER: GOSUB 390
730 O$ = 08 +)I ST=0 : CT=": TEMP = TOTALSUM: GOSUB 390
740 GOSUB 890
750 LINENUMBER = LINENUMBER + 10
760 O$ = (1": TEMP = LINENUMBER: GOSUB 390
770 O$ = 08 + ' FOR X = '
780 TEMP = START: GOSUB 390
790 O$ = O$ + " TO "
800 TEMP = FINISH: GOSUB 390
810 08 = O$ + ’ : READ H : XBY(X)=H : ST=ST+H : NEXT X"
820 GOSUB 890
830 LINENUMBER = LINENUMBER + 10
840 08 = (1": TEMP = LINENUMBER: GOSUB 390
850 08 = 08 + ’ IF (CT<>ST) THEN PRINT (1
860 08 = 0$ + CHR$(34) + "DATA ERROR" + CHR$(34) + ’ : END":

GOSUB 890
870 LINENUMBER = LINENUMBER + 10: BYTECOUNT = 0
880 RETURN
890 REM Display and save present BASIC line
900 PRINT #2,0$
910 PRINT 08
920 RETURN
930 REM First character error in Intel hex paragraph
940 PRINT"Error. First character must be a I:"': CLOSE
950 REM Character error within Intel hex paragraph
960 PRINT"Error in input file": CLOSE: END
970 GOSUB 390: O$ = 08 + ' RETURN": GOSUB 890: CLOSE:

: END

END

INK@

to a known good total placed in the
BASIC program:

60 S = 0: C = 834
70 FOR X = 4200H TO 4205H
80 S = S + XBY(X)

90 NEXT X
100 IF (C<>S) THEN PRINT"Data

error": STOP

This is where I lose a bunch of
people. “I’m not gonna type in all
those DATA statements with the code
from my assembled source. My Intel
hex file is over 1 KB in size.”

There isn’t much I can say that
would convince them it would be
worth their while. So, this month I
present a piece of code, written in a
generic PC BASIC, which reads in an
Intel hex file and translates it into
BASIC-52 DATA statements. The out-

put can be appended to your BASIC-52
application program.

INTEL HEX FILES
When a source file is assembled

into a binary file, it contains no ad-
dress information and no way-other
than the file size-of assuring that the
file has not been corrupted. When the
binary file is translated into an Intel
hex file, it becomes protected, if you
will. The binary data is cut into small
chunks, called lines or paragraphs,
and surrounded by additional informa-
tion.

As you can see in Figure 2, each
Intel hex line begins with a ” : ” start
character followed by the number of
data bytes in the chunk (two hex char-
acters) OOH-FFH. (Note that the chunk
must have data bytes which can be
loaded into successive addresses.) To

#67 February 1996 Circuit Cellar INK

keep the lines viewable on an
80column screen, the size of a
chunk is generally limited to
20H (that’s 32 binary bytes or
hexadecimal pairs J.

The next four characters are
the hexadecimal starting ad-
dress for the first byte in the
chunk OOOOH-FFFFH. A two-

Code space
address

OOOOH
0003H
OOOBH
0013H
001 BH
0023H
002BH

Function

RESET
IEO (external interrupt 0)
TFO (timer 0 overflow)
IEl (external interrupt 1)
TFl (timer 1 overflow)
RI & TI (serial-port interrupt)
TF2 & EXF2 (timer 2/Capture) (80 x 2 only)

character mode byte follows Table l-The 8031 core inferrupt vectors require code memory space sfarfiag
the load address. If the mode at OOOOH.

important information is
extracted, like load address,
number of data bytes, data,
sum of the data, and legal
checksum. Errors are flagged
during processing.

An output string is formed
using line-number informa-
tion and the proper format for
BASIC-52 DATA statements.

byte is OOH, then data follows.
If the mode byte is OlH, then it’s an
EOF marker. (Other mode bytes indi-
cate extended addressing and are not
used when the address space doesn’t
exceed 64 KB.) Assuming the mode
byte is OOH, the chunk of data follows
in hexadecimal format.

Finally, to keep errors from creeping
in, a checksum byte is added. Since
every line has a checksum byte, each
is individually protected. And, since
each chunk of data comes along with
its load address, every data byte is
placed exactly where it belongs, even if
the lines somehow get out of se-
quence.

FILE TRANSLATION
The file HEXZBAS. BAS (Listing 1)

was written in a generic PC BASIC and
should be usable with any of the more
powerful BASICS available today.

When run, it asks for the Intel hex
file’s name and what BASIC-52 line
number to begin with. You should
answer with the file name you’d like
translated and a line number higher
than any used in your BASIC-52 appli-
cation (e.g., 10000). An output file
called DATA. BAS is created, and both
files are opened.

As each line is read in from the
Intel hex file, it is dissected. All the

When the output string reach-
es eight data values, it’s writ-

ten to the output file, and the line
number counter increments.

Meanwhile, if the next input line’s
load address is not the next sequential
address, the code is not sequential and
the new data must be handled as such.
So, the last data byte in the last line
must be the end of the last block and
therefore the block’s ending load ad-
dress. I now must create a FOR/NEXT
loop load routine for that last block.
Remember the routine which loads the
data into RAM?

I’ve been keeping track of the sum
of the data within this block. There-
fore, I can also allow the load routine

#67 February 1996 Circuit Cellar INK

of code is the reset vector jump. Since
BASIC-52 runs on powerup and this
vector is not shadowed like the others,
it can be discarded. Well, almost.

Instead, 4200H is the location BA-
SIC would call to enter the routine. In
this example, there is never a return to
BASIC. The assembly-language routine
completely takes over until power is
shut down. Here, BASIC loads the
jump vectors and routines-once it
passes execution over to the routine, it
is never heard from again.

This situation, of course, is the
extreme. Why bother at all with BA-
SIC once you are writing totally in
another language?

And rightly so. I do not advocate
the use of BASIC for every application.

As you have seen here, it is very
possible for BASIC-52 and assembly
routines to coexist. I hope I have dem-
onstrated a way you can use the 8OC52
to have your cake (the power of BASIC)
and eat it too (call on the speed of
assembly language). Remember, when
all you need to do is tap, don’t use a
sledge. q

/eff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.

His background includes product
design and manufacturing. He may be
reached at jeff.bachiochi@circellar.com.

But, I do like the friendly development 428 Very Useful
environment and the ease of getting an 429 Moderately Useful
application up and running. 430 Not Useful

What is the Intel hex filename? DEMOl.H:X

The output file will be called DATA.BAS. What line number should
it begin with? 10000

10000 DATA OOZH, 042H, OOOH
10010 ST=0 : CT=68
10020 FOR X = 0 TO 2 : READ H : XBY(X)=H : ST=ST+H : NEXT X
10030 IF (CT<>ST) THEN PRINT "DATA ERROR": END
10040 DATA OOZH, 042H. 04DH
10050 ST=0 : CT=145
10060 FOR X = 35 TO 37 : READ H : XBY(X)=H : ST= ST+H : NEXT X
10070 IF (CT<>ST) THEN PRINT "DATA ERROR" : END
10080 DATA OOZH, 042H, 042H
10090 ST=0 : CH=134
10100 FOR X = 11 TO 13 : READ H : XBY(X)=H : ST= ST+H : NEXT X
10110 IF (CH<>ST) THEN PRINT "DATA ERROR" END
10120 DATA OE4H, OF5H, 090H, OC2H, OD5H, OD2H, OD4H, 078H
10130 DATA 020H, OCZH, OD4H. 075H, 098H. 050H, 075H, 089H
10140 DATA OZOH, 075H, 08DH, OFDH, 085H, 08DH, 08BH, 075H
10150 DATA OB8H, OlOH, 075H, OA8H, 092H, 075H, 088H, 050H
10160 DATA 012H, 042H, 03FH, OFAH, OFBH, OF5H, 090H, OF4H
10170 DATA OF5H, 08CH, OEBH, 020H, OD5H, 004H, 003H. OOZH
10180 DATA 042H, 033H, 023H, OFBH, OF5H, 090H. 012H, 042H
10190 DATA 03FH. 06AH. 060H, OEEH, 06AH, 080H, OE4H, OE5H
10200 DATA OAOH, 022H, OCOH, OEOH, OB2H, OD5H, OEAH, OF4H
10210 DATA OF5H, 08CH, ODOH, OEOH, 032H, OCOH, OEOH, OCOH
10220 DATA ODOH, OCZH, 098H, 075H, ODOH, OlOH, OE5H, 099H
10230 DATA OF5H, OFOH, 064H, OODH, 070H, OOFH, 074H, OlFH
10240 DATA OC3H, 098H. OF4H, 060H, 013H, OFBH, OE4H, 018H
10250 DATA OF2H,,ODBH, OFCH, 080H, OOBH, 074H, 03FH, OC3H
10260 DATA 098H, OB3H, 050H, 004H, OE5H, OFOH, OF2H, 008H
10270 DATA ODOH, ODOH, ODOH, OEOH, 032H
10280 ST=0 : CT=18439
10290 FOR X = 16896 to 17020 : READ H : XBY(X)=H : ST=ST+H :
NEXT X
10300 IF (CHECKTOTAL<>STORETOTAL) THEN PRINT "DATA ERROR" : END

End of file OK

Figure 3-A ruun of fhe translation program demonstrates the kind of output you can expect from an Me/ hex

#67 February 1996 Circuit Cellar INK

