
FEATURES

• Small size—complete computer/controller with I/O in less than
 1.5 cubic inches (1.5″ × 2.1″ × 0.5²)
• Low power—only 175 - 250 mW typical
• Dual powered—operates on +5 V or 8–16 V at 35-50 mA (typical)
• Communications through RS-232A, RS-422, or RS-485 serial
port up to 115.2 kbps; internal on-chip level shifters

• Full floating-point BASIC for easy programming
• Two firmware PWM outputs—2 Hz–3 kHz, 5–95% duty cycle
• Hardware PWM output—up to 1 MHz, depending on duty cycle
• Frequency measurement—15 Hz–15 kHz
• I²C bus
• 32-KB SRAM for “enter and execute” program testing
• 32-KB EEPROM nonvolatile storage for autostart applications
• Hardware real-time clock/calendar
• 40-pin DIP-style enclosed packaging with rugged square pins
• Optional 2-channel, 12-bit ADC, 7000 samples/second BASIC
and Assembly, 250 samples/second straight BASIC

• 11.059-MHz system clock
• 2 interrupts and 3 timers
• Parallel I/O—(Processor) 12 bits of bit-programmable TTL-level
and 16 bits of bit-programmable high current drive I/O lines;
25mA sink per pin with 20mA source per pin. Port A & B can
only sink or source up to a combined total of 200mA.

• Regulated 5-V output powers external circuitry

DESCRIPTION

The DOMINO-2 micro controller is a rugged, miniature
controller with a fast, control-oriented, processor-masked
BASIC interpreter. DOMINO-2 programs can be entirely BASIC
or a mixture of BASIC and assembly language routines with a
BASIC CALL instruction.
DOMINO-2 is designed to be a 100% stand-alone, low-power,
embedded controller, which only requires a user to apply
power to function. Power can be either +5 V only or +8-16 V to
the internal regulator. When using the regulator input, a 5-V
output is available to external circuitry.

DOMINO-2 is both RS-232A and RS-485 compatible without
extra components. Based on a CMOS 80C52 processor,
DOMINO-2 provides a ROM-resident BASIC interpreter, 32-KB
of static RAM, and 32 KB of nonvolatile EEPROM.

DOMINO-2 has 12 bi-directional bit-programmable parallel
I/O lines (3 are shared with the ADC) plus 16 bits of bi-
directional, bit-programmable high-current I/O lines provided by
a built-in I²C parallel expander. These bits can source/sink
more than 20 mA each (limited by total package dissipation).
The coprocessor also offers a hardware PWM output and a
real-time clock/calendar. Analog input is via a 2-channel
sample-and-hold 12-bit ADC. It is capable of sampling at 7000
samples/sec BASIC & Assembly, 250 samples/sec BASIC.

Additional firmware enables program calls to directly read
frequency and period, set PWM pulse width and duty cycle,
communicate with I² C bus peripherals, and save programs to
EEPROM that can be auto started.
DOMINO-2 combines the ROM-resident BASIC with a
selection of firmware program calls to directly read frequency
and period, set PWM pulse width and duty cycle, communicate
with I²C bus peripherals, and save programs to EEPROM
that can be auto started.

1

Micromint
Modules

© 1997 Micromint, Inc . Rev. 2.1 October 31, 2001

Microcomputer/controller
with embedded BASIC interpreter

8
Port B

Line Receiver

Line Driver

SRAM

EEPROM

with utilities

80C52

with

BASIC

interpreter

I2C

Coprocessor

and

RTC

Serial I/O

RS-232A, RS-422,

and RS-485

TTL I/O

Analog Inputs (optional)

+V (8–16 unregulated)

5-V

Regulator

D
om

ino C
onnector

ADC

Optional

8–12

8
Port A

PWM

2

32 kHz

TM

Microcontroller

PIN 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

+5

TX+

TX–

RX+

RX–

T1

T0

*INT1

*INT0

ADC1

ADC0

GND

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

+V

Vbat

PWM

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

TOP VIEW

P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0

GND

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

2

DOMINO-2™

PIN DESCRIPTIONS
Domino-2 is a 40-pin package (2.25″ × 1.4″ × 0.5″) with 0.1″ pin and 1.2″ row spacing. Some pins have multiple functions

depending on system configuration.

1 V+ Domino-2 power-supply input. V+ is
nominally 8–16 V. If pin 1 is open, Domino-2
can be +5-V powered directly to pin 40.

2 Vbat 3V battery backup input for real-time clock
See ERRATA on Page 27.

3 PWM Hardware PWM output generated by
coprocessor

4 P1.7 TTL I/O bit 7, available directly through
BASIC; optionally used as ADC CS input
and as I2C clock

5 P1.6 TTL I/O bit 6, available directly through
BASIC; optionally used as DATA I/O for
ADC and I2C

6 P1.5 TTL I/O bit 5, available directly through
BASIC; optionally used as ADC CLK

7 P1.4 TTL I/O bit 4, available directly through
BASIC

8 P1.3 TTL I/O bit 3, available directly through
BASIC

9 P1.2 TTL I/O bit 2, available directly through
BASIC

10 P1.1 TTL I/O bit 1, available directly through
BASIC

11 P1.0 TTL I/O bit 0, available directly through
BASIC

12 PA7 I2C Expansion I/O Port A bit 7; high-current
I/O pin

13 PA6 I2C Expansion I/O Port A bit 6; high-current
I/O pin

14 PA5 I2C Expansion I/O Port A bit 5; high-current
I/O pin

15 PA6 I2C Expansion I/O Port A bit 4; high-current
I/O pin

16 PA3 I2C Expansion I/O Port A bit 3; high-current
I/O pin

17 PA2 I2C Expansion I/O Port A bit 2; high-current
I/O pin.

18 PA1 I2C Expansion I/O Port A bit 1; high-current
I/O pin.

19 PA0 I2C Expansion I/O Port A bit 0; high-current
I/O pin.

20 GND Single point analog and digital ground.

21 GND Single point analog and digital ground.

22 PB0 I2C Expansion I/O Port B bit 0; high-current
I/O pin.

23 PB1 I2C Expansion I/O Port B bit 1; high-current
I/O pin.

24 PB2 I2C Expansion I/O Port B bit 2; high-current
I/O pin.

ABSOLUTE MAXIMUM RATINGS

Operating temperature:
 Commercial 0°C to +70°C
 Industrial –40°C to +85°C
Storage temperature –50°C to +125°C
Voltage on V+ (Pin 1) 0 to +16 V
 referenced to Vss

Pin Signal DescriptionPin Signal Description

Voltage on +5V (Pin 40) 0 to +5.5 V
 referenced to Vss
 with Pin 1 open
Voltage on Vbat (Pin 2) 0 to +5.0 V

Industrial temperature version is available; minimum quantities apply.

3

DOMINO-2™

25 PB3 I2C Expansion I/O Port B bit 3; high-current
I/O pin.

26 PB4 I2C Expansion I/O Port B bit 4; high-current
I/O pin.

27 PB5 I2C Expansion I/O Port B bit 5; high-current
I/O pin.

28 PB6 I2C Expansion I/O Port B bit 6; high-current
I/O pin.

29 PB7 I2C Expansion I/O Port B bit 7; high-current
I/O pin.

30 ADC0 12-bit ADC channel 0 input, input range 0–
5 V.

31 ADC1 12-bit ADC channel 1 input, input range 0–
5 V.

32 INT0 TTL Interrupt 0 input and general I/O bit
(available through assembly language).

33 INT1 TTL Interrupt 1 input and general I/O bit
(available through assembly language or
BASIC).

Pin Signal Description Pin Signal Description

34 T0 Serial transmitter disable control, TTL timer/
counter input and general purpose I/O bit
(available through assembly language).

35 T1 TTL timer/counter input and general
purpose I/O bit (available through assembly
language).

36 RX– RS-422/-485/-232A inverted serial (receive
pair/recxmit pair/receive)

37 RX+ RS-422/-485/-232A noninverted serial
(receive pair/rec-xmit pair)

38 TX– RS-422/-485/-232A inverted serial (transmit
pair/rec-xmit pair/transmit)

39 TX+ RS-422/-485/-232A noninverted serial
(transmit pair/rec-xmit pair)

40 +5V This is the internal ADC voltage reference
(nominally 5.0 V) This output may be used
to power minimal external circuitry or
sensors. DOMINO-2 may be powered on
+5-V only through this pin, provided Pin 1 is
left unconnected.

MECHANICAL AND ENVIRONMENTAL CHARACTERISTICS

TM

Microcontroller

PIN 1

A

B

pin 1

F

C

ED I

G
H

G

Length 2.25 inches
Width 1.375 inches
Height 0.52 inches
Weight 25 grams
Operating temperature 0 to +70°C

(optional –40 to +85 °C)
Humidity 0 to 100% (noncondensing)

Inches Millimeters
Dim Min Max Min Max

A 2.240 2.260 56.896 57.404
B 1.370 1.390 34.798 35.306
C 0.520 0.540 13.208 13.716
D 0.085 0.115 2.159 2.921
E 0.180 0.160 4.572 4.064
F 0.195 0.205 4.953 5.207
G 0.140 0.160 3.556 4.064
H 1.050 1.150 26.670 29.210
I 0.023 0.027 0.584 0.686

4

DOMINO-2™

Operating temperature Ta = 0°C to +70°C
Operating voltage Vcc = 4.75 V to 5.25 V

Vss = 0.0 V

Characteristic Minimum Typical Maximum Units Condition

Supply Voltage
(Vcc to Pin 40)) 4.75 5.00 5.25 V
(+V to Pin 1) 7 9 16 V

Supply Current (Icc) 35-50mA mAtypical
(RS-422/485 50-Ω
termination disabled)

Input Low Voltage (Vil) –0.5 0.9 V
Input High Voltage (Vih) 1.9 5.5 V
Output Low Voltage (Vol) 0.45 V Iol=1.6 mA
Output High Voltage (Voh) 4.5 V Ioh=–10 µA

2.4 V Ioh=–400 µA

DC ELECTRICAL CHARACTERISTICS

Note 1: RS-232A is characterized as a ±5-V bipolar signal (as
opposed to RS-232C at ±12 V). Drivers and receivers are ac-
tually RS-422 and the interface is an RS-423 connection (single
ended to differential). Domino RS-232A Voltage output is

Note 2: Two diodes are tied to each analog input which will
conduct when the input voltage is one diode drop below ground

Characteristic Minimum Typical Maximum Units Condition

Differential Driver
Output Voltage 5.0 V Unloaded

See Note 1
RS-422 2.0 5.0 V R=50 Ω
RS-485 1.5 5.0 V R=27 Ω
Maximum Receiver
 Input voltage ±14 V
ESD Protection 2000 V

COMMUNICATION LINE DC ELECTRICAL CHARACTERISTICS

Characteristic Minimum Typical Maximum Units Condition

Resolution 12 bits
Linearity Error ±3⁄4 bits
Offset and Gain Error ±2 bits
Voltage Reference 4.5 5.0 5.5 V VREF is Vcc
Analog Input Range –0.5 to Vcc+0.05 V See Note 2
Analog Input Impedance 250k Ω See Note 3

A/D CONVERTER CHARACTERISTICS

or one diode drop above Vcc. To achieve absolute 0–5-V input
range requires Vcc to be greater than 4.950 V.

Note 3: The ADC input impedance is a function of clock fre-
quency. The sampling frequency of the DOMINO ADC built-in
utility results in a typical impedance of 250 kΩ.

 250 reads per second straight BASIC - 7000 reads per second straight assembly

0-5V only.

5

DOMINO-2™

1.0 PROGRAMMING CHARACTERISTICS

0FFFFH

0F000H

0E000H

0D000H

0C000H

0B000H

0A000H

09000H

08000H

07000H

06000H

05000H

04000H

03000H

02000H

01000H

00000H

3

2

k

E

E

P

R

O

M

3

2

k

S

R

A

M

Memory management
Development mode Application mode

DOMINO utilities

User’s program

autostart information

DOMINO utilities

(when necessary)

interrupt vectors

(when necessary)

interrupt vectors

User’s program

BASIC’s external data BASIC’s external data

2.0 MEMORY MAP
The 64-KB memory is based on an 8051 microcontroller’s

memory structure. The upper 32 KB is devoted to ROM and
the lower 32 KB to RAM.

2.1 Development Mode

When you’re in the development mode, the lower 32 KB of
memory is used as temporary storage for BASIC’s programs,
variables, and jump vectors.

The development mode is used to test and debug BASIC
programs. The top of the upper ROM space holds the utilities
which are callable functions complementing BASIC’s floating-
point commands.

2.2 Applications Mode

Finished BASIC programs are saved in the upper 32 KB of
nonvolatile ROM space along with the utilities. BASIC programs
can be autoexecuted on powerup or reset.

The lower 32 KB of RAM space is used for storage of tem-
porary variables and jump vectors.

DOMINO-2 is a complete computer/controller in one tiny
package. The embedded BASIC interpreter and firmware pro-
vide the user with a direct means to enter and save an
autostarting control program without expensive development
tools. Such powerful advantages facilitate completing a pro-
gramming task in record time. You can write, test, and save
code in nonvolatile storage directly on DOMINO-2.

The friendly, control-oriented BASIC command set allows
easy access to the integrated digital and analog I/O functions.
Conversion calculations are a breeze thanks to BASIC’s float-
ing-point number crunching. Because of the power of a high-
level language such as BASIC, useful programs often take less
than a dozen programming statements. Nonetheless,
DOMINO-2 has over 30 KB of space reserved for your appli-
cation code and the utilities. For Application notes, please

Even though DOMINO-2 is optimized for BASIC programs,
assembly language programs are easily accommodated as
callable routines. A DOMINO-2 application program can be all
BASIC, BASIC with callable assembly language routines, or
virtually all assembly language with the only BASIC command
being an introductory CALL.

DOMINO-2 contains all the communication interface hard-
ware. It can be used standalone to monitor analog and digital
inputs and to provide control outputs directly to machine or
network interfaces. When connected serially, DOMINO-2 can
serve as a remote device, reporting monitored conditions to
your PC or receiving commands to control external compo-
nents. If multiple DOMINO-2s are networked with a master PC
or another DOMINO-2, multi-drop units can share information
collected throughout the network.

visit www.micromint.com

6

DOMINO-2™

3.0 BASIC INSTRUCTION SET
Command Function
RUN Execute a program
CONT Continue after a stop or Control-C
LIST List program to the console device
LIST# List program to serial printer port (P1.7)
NEW Erase the program stored in RAM
NULL Set null count after carriage return/line feed
RAM Evoke RAM mode, current program in read/write

memory
ROM Evoke ROM mode, current program in ROM/

EPROM
XFER Transfer a program from ROM/EPROM to RAM

Statement Function
ASC() Returns integer of ASCII character
BAUD Set data-transmission rate for line-printer port
CALL Call assembly-language program
CHR() Returns ASCII character of integer
CLEAR Clear variables, interrupts, and strings
CLEARS Clear stacks
CLEARI Clear interrupts
CLOCK1 Enable real-time clock
CLOCK0 Disable real-time clock
DATA Data to be read by READ statement
READ Read data in DATA statement
RESTORE Restore READ pointer
DIM Allocate memory for arrayed variables
DO Set up loop for WHILE or UNTIL
UNTIL Test DO loop condition (loop if false)
WHILE Test DO loop condition (loop if true)
END Terminate program execution
FOR-TO-{STEP} Set up FOR...NEXT loop
NEXT Test FOR...NEXT loop condition
GOSUB Execute subroutine
RETURN Return from subroutine
GOTO GOTO program line number
ON GOTO Conditional GOTO
ON GOSUB Conditional GOSUB
IF-THEN-{ELSE} Conditional test
INPUT Input a string or variable
LET Assign a variable or string a value (LET is optional)
ONERR ONERR or GOTO line number
ONTIME Generate an interrupt when time is equal to or

greater than ONTIME argument; line number is after
comma

ONEX1 GOSUB to line number following ONEX1/ when
INT1 pin is pulled low

PRINT Print variables, strings, or literals, P. is shorthand for
print

PRINT# Print to serial printer port (P1.7)
PH0. Print hexadecimal mode with zero suppression
PH1. Print hexadecimal mode with no zero suppression
PH0.# PH0.# to serial printer port (P1.7)
PH1.# PH1.# to serial printer port (P1.7)
PUSH Push expressions on argument stack
POP Pop argument stack to variables
PWM Pulse-width modulation
REM Remark
RETI Return from interrupt
STOP Break program execution
STRING Allocate memory for strings
UI1 Evoke user console input routine
UI0 Evoke BASIC console input routine
UO1 Evoke user console output routine
UO0 Evoke BASIC console output routine

Operator Function
CBY() Read program memory
DBY() Read/assign internal data memory
XBY() Read/assign external data memory
GET Read console
IE Read/assign IE register
IP Read/assign IP register
PORT1 Read/assign I/O port 1 (P1)
PCON Read/assign PCON register
RCAP2 Read/assign RCAP2 (RCAP2H:RCAP2L)
T2CON Read/assign T2CON register
TCON Read/assign TCON register
TMOD Read/assign TMOD register
TIME Read/assign real-time clock
TIMER0 Read/assign TIMER0 (TH0:TL0)
TIMER1 Read/assign TIMER1 (TH1:TL1)
TIMER2 Read/assign TIMER2 (TH2:TL2)
+ Addition
/ Division
** Exponentiation
* Multiplication
- Subtraction
.AND. Logical AND
.OR. Logical OR
.XOR. Logical exclusive OR

Stored Constant
PI PI - 3.1415926

Operators-Single Operand
ABS() Absolute value
NOT() One’s complement
INT() Integer
SGN() Sign
SQR() Square root
RND Random number
LOG() Natural log
EXP() “e” (2.7182818) to the X
SIN() Returns the sine of argument
COS() Returns the cosine of argument
TAN() Returns the tangent of argument
ATN() Returns the arctangent of argument

Utility Calls (executed as CALL {address})
PROG Save the current program in EEPROM
PROG1 Save data-transmission-rate information in

EEPROM
PROG2 Save data-transmission-rate information in

EEPROM and execute program after reset
PROG3 Save data-transmission-rate information in

EEPROM and saves MTOP
PROG4 Save data-transmission-rate information in

EEPROM and execute program after reset
ADC Read 0–5-V input on AD0 or AD1, measurement

returned as floating-point value
PWM Continuous background PWM tasking
FREQ Measurement of TTL input frequency
PERIOD Measurement of TTL input period
I2C Communication with external I2C connected

coprocessor and externally connected peripheral
chips

DOMINO-2™

7

Feature Function Call Address
12- bit Analog-Digital Conversion Single-ended channel 0 0F000H

Single-ended channel 1 0F008H
Differential +/- 0F010H
Differential -/+ 0F018H

Single-ended channel 1 & 0 0F020H

8-Bit Analog-Digital Conversion Single-ended channel 0 0F080H
NOTE: Only available when connected externally

Pulse-Width Modulation Start PWM0 using TIMER0
and *INT0 ad outputs 0F060H

Stop PWM0 immediately 0F068H
Start PWM1 using TIMER1

and *INT1 ad outputs 0F064H
Stop PWM1 immediately 0F06CH

Period and Frequency Start measurement on*INT0 0F070H
Start measurement on *INT1 0F074H

Retrieve measurement on INT0 0F078H
Retrieve measurement on INT1 0F07CH

Program the EEPROM (PROGx) PROG 0FF00H
PROG1 0FF08H
PROG2 0FF10H
PROG3 0FF18H
PROG4 0FF20H

I2C Byte Transfer Retrieve Registered Byte 0F12CH
Send Byte 0F120H

Retrieve Byte 0F124H

I2C Beeper 0F110H
I2C Keypad Initialize 0F100H

Hook into UI0/1 BASIC command 0F108H

I C LCD Initialize 0F030H
Clear display and home cursor 0F038H
Display $(0) string 0F040H

Hook into UI0/1 BASIC command 0F050H

Utilities Version Number 0FFF0H

3.1 Domino Utilities Function Calls

2

8

DOMINO-2™

4.0 DOMINO-2 FUNCTION CALL PROCEDURES
These function calls are loaded into the EEPROM above

BASIC program storage by a utility loader. The DOMINO-2 firm-
ware is preloaded at the factory prior to shipment. Should it be
accidentally erased or need to be revised, it can be repro-
grammed using the bootstrap loader diskette included in the
DOMINO-2 development software package.

DOMINO-2 is potentially reprogrammable even while sol-
dered in an end-use application. This reprogramming reduces
obsolescence, making it possible for a user to upgrade current
DOMINO-2 stock with the latest enhancements.

Micromint has included additional utilities with its built-in
BASIC interpreter. Not only do you have the power of a full
floating-point BASIC, but you also have extra functions to help
make your application extremely easy to produce. The added
functions include analog measurement, dual PWM outputs, dual
period/frequency input measurements, I2C bus compatibility
(e.g., LCD output and keypad input), and program storage in
EEPROM for autostarting your application on power-up. These
functions are written in assembler to be extremely fast. They
are simple to use straight from BASIC.

ADC read 0–5-V input on AD0 or AD1, measurement
returned as floating-point value

PWM continuous background PWM tasking
FREQ measurement of TTL input frequency
PERIOD measurement of TTL input period
PROG1–4 autoexecutable program storage into nonvolatile

EEPROM
I2C communication with external I2C peripherals

Syntax: CALL {address}
POP {variable}

Function: The CALL initiates an analog-to-digital conversion.
The result is presented on the stack to be POPed by the user.

Mode: Command, Run
Use: [single-ended channel 0]

CALL 0F000H
POP {variable}

[single-ended channel 1]
CALL 0F008H
POP {variable}

[differential +/–]
CALL 0F010H
POP {variable}

[differential –/+]
CALL 0F018H
POP {variable}

[single-ended channel 1 & 0]
CALL 0F020H
POP {variable},{variable}

Description: The processor’s Port1 pins (P1.7 *CS, P1.6 Data,
and P1.5 CLK) are used to access either the internal LTC1298
(DOMINO-2A) or an externally connected LTC1298 (DOMINO-
2). The LTC1298 offers a number of different connection con-
figurations. Two ADC input channels are available when each
is a single-ended measurement (referenced to ground). Alter-
natively, these channels can be used as a single differential
input (neither is ground referenced but there is no greater than
5 V between them). Channel 0 is +input, channel 1 is –input.

Related Topics: 8-bit A/D Conversion

4.1 12-Bit Analog-Digital Conversion

Error Presentation: No errors presented. A CALL made to a
nonexistent ADC still returns a value on the stack, albeit one of
no meaning.

Example:
10 PRINT "This program prints an A/D conversion"
20 PRINT " from two single-ended inputs: Channel

1 & 0"
30 INPUT"Measure and enter your VCC voltage

(e.g., 5.12)"P
40 CALL 0F020H: REM THE FUNCTION CALL
50 POP V1.V0: REM GETTING THE RESULTS
60 PRINT USING(0),"Channel 1's conversion count

is".V1
70 PRINT " and the calculated voltage is",
80 PRINT USING(#.###), V1 * (P/4096), " volts"
90 PRINT USING(0),"Channel 0's conversion count

is",V0
100 PRINT " and the calculated voltage is"
110 PRINT USING(#.###), V0 * (P/4096)," volts"
120 PRINT "Hit a <cr> to make another conversion"

: PRINT
130 IF (GET=0) THEN GOTO 130 ELSE GOTO 40

READY
>RUN

Program Output :::::
This program prints an A/D conversion
 from two single-ended inputs: Channel 1 & 0
Measure and enter your VCC voltage (e.g., 5.12) ?
 4.95
Channel 1's conversion count is 254
 and the calculated voltage is 0.310 volts
Channel 0's conversion count is 1259
 and the calculated voltage is 1.521 volts
Hit a <cr> to make another conversion

DOMINO-2™

9

Syntax: CALL {address}
POP {variable}

Function: The CALL initiates an analog-to-digital conversion.
The result is presented on the stack to be POPed by the user.

Mode: Command, Run

Use: [single-ended channel 0]
CALL 0F080H
POP {variable}

Description: The processor’s Port1 pins (P1.7 *CS, P1.6 Data,
and P1.5 CLK) are used to access an externally connected
ADC0831 (DOMINO-2). The ADC0831 offers a single-ended
measurement (referenced to ground).

Related Topics: 12-bit A/D Conversion

Error Presentation: No errors presented. A CALL made to a
nonexistent ADC still returns a value on the stack, albeit one of
no meaning.

Example:
10 PRINT "This program prints an A/D conversion"
20 PRINT " from a single-ended input on Channel
 0"
30 INPUT"Measure and enter your VCC voltage
 (e.g., 5.12)"P
40 CALL 0F080H: REM THE FUNCTION CALL
50 POP V0: REM GETTING THE RESULTS
60 PRINT USING(0),"Channel 0’s conversion count
 is",V0
70 PRINT " and the calculated voltage is",
80 PRINT USING(#.###), V0 * (P/256)," volts"
90 PRINT "Hit a <cr> to make another conversion"
 : PRINT
100 IF (GET=0) THEN GOTO 100 ELSE GOTO 40

READY
>RUN

Program Output:
This program prints an A/D conversion
 from a single-ended input on Channel 0.
Measure and enter your VCC voltage (e.g., 5.12) ?
 4.95.
Channel 0's conversion count is 54
 and the calculated voltage is 1.044 volts.
Hit a <cr> to make another conversion

4.2 8-Bit Analog-Digital Conversion

4.3 Pulse- Width Modulation (See p. 18 for hardware PWM)

Syntax: PUSH {On time},{Off time},{Duration}
CALL {address}

where variable:
(On time) = integer 150–65535 counts
(Off time) = integer 150–65535 counts
(1 count = 1.085 µs)
(Duration) = integer 0–255 cycles
(0 = continuous)

and given that:
1–99% duty cycle pulses up to 60 Hz
50% duty cycle pulses up to 3 kHz

Function: Defines the on time (high), off time (low), and du-
ration (# of complete cycles) for a PWM output signal. It also
starts the PWM output. A duration of zero means continuous
output. Two separate PWM outputs are available *INT0 uses
TIMER0 and T1 uses TIMER1.

WARNING: Using PWM0 disables all other functions using
 Timer0 and INT0. Using PWM1 disables all other functions

BASIC commands using:
TIMER0: CLOCK1
TIMER1: PWM, LIST#, PRINT#
INTERRUPT 0: none

Mode: Command, Run

Use: [start PWM0 using TIMER0 and *INT0 as output]
PUSH 500,1500,0
CALL 0F060H

[stop PWM0 immediately]
CALL 0F068H

[start PWM1 using TIMER1 and T1 as output]
PUSH 500,1500,0
CALL 0F064H

[stop PWM1 immediately]
CALL 0F06CH

Description: Using the PWM function requires MTOP to be
set to 3FFFH (although the function call sets this, the user
should be aware that any variable used prior to this call is
destroyed unless MTOP is preset to 3FFFH at the beginning
of a program).

TIMER interrupt vector locations (400BH–400DH and
401BH–401DH) and on time, off time, and duration values
storage locations (4200H–420BH) are set up in RAM. The
PWM function call sets up the TIMER counts alternating be-
tween the on-time value and the off-time value on each
TIMER overflow until the duration value has been decreased
to zero.

 using Timer1.

10

DOMINO-2™

A separate function call can be made at any time to im-
mediately shut down the PWM. Each on- and off-time count
defined is the number of 1.085-µs tics the routine delays be-
fore changing state. The minimum count is 150 (150 × 1.085
µs) or 163 µs. The max count is 65,535 or 71 ms.

Related Topics: PWM (BASIC command). The BASIC-52
Interpreter’s PWM command halts execution of the BASIC
program while it is being executed. PWM0 and PWM1 func-
tion calls do NOT halt the execution of the BASIC program,
but it becomes a background task.

Error Presentation: No error are reported although any BA-
SIC command which uses the timers is disabled (see Func-
tion description above).

Example: This example sets up both PWM outputs with con-
tinuously varying 1–99% duty cycles.

10 FOR Y=150 TO 14700 STEP 300
20 PUSH Y
30 PUSH 15000–Y
40 PUSH 0
50 CALL 0F060H
60 PUSH 15000–Y
70 PUSH Y
80 PUSH 0
90 CALL 0F064H
91 FOR Z=1 TO 50: NEXT Z
100 NEXT Y
110 FOR Y=14700 TO 150 STEP –300
120 PUSH Y
130 PUSH 15000–Y
140 PUSH 0
150 CALL 0F060H
160 PUSH 15000–Y
170 PUSH Y
180 PUSH 0
190 CALL 0F064H
191 FOR Z=1 TO 50: NEXT Z
200 NEXT Y
210 GOTO 10

READY
>RUN

4.4 Period and Frequency

Syntax: CALL {address} [Start measurement]
CALL {address} [Retrieve result]
POP {variable}

where variable:
(period count) = integer 0–65535
(0 = measurement started)
(1 = measurement in process)
(2 = overflow occurred—signal too slow)
(60–65535 = counts between negative edges)
(1 count = 1.085 µs)
(period = 65 µs–71 ms)
(frequency = 15 kHz–15 Hz)

Function: The start measurement function call sets up the
edge-triggered input interrupts and timers used to measure
the period between two successive input edges. Two sepa-
rate input signals can be measured. Input *INT0 uses inter-
rupt 0 and timer0 and input *INT1 uses interrupt 1 and
timer1. WARNING: Using either of these inputs disables any
other function using the interrupts or timers. The timers and
interrupts may again be used after the function calls are
complete.BASIC commands using:

TIMER0: CLOCK1
INTERRUPT0: none
TIMER1: PWM
LIST#, PRINT# INTERRUPT1: ONEX1

Mode: Command, Run

Use: [Start a measurement on input *INT0]
CALL 0F070H

[Start a measurement on input *INT1]
CALL 0F074H

[Retrieve a measurement on input *INT0]
CALL 0F078H
POP P

[Retrieve a measurement on input *INT1]
CALL 0F07CH
POP P

Description: Using the PERIOD/FREQUENCY function re-
quires MTOP to be set to 3FFFH (although the function call
sets this, the user should be aware that any variable used
prior to this call is destroyed unless MTOP is preset to
3FFFH at the beginning of a program). External interrupt
vector locations (4003H–4005H and 4013H–4015H), TIMER
interrupt vector locations (400BH–400DH and 401BH–
401DH) and period count storage locations (420CH–420FH)
are set up in RAM. The start period measurement function
call initializes the INTERRUPT and TIMER. The retrieve
measurement function call passes the measurement status
back to the user via the stack. The status is indicated as fol-
lows:

DOMINO-2™

11

POPed Value Meaning
0 waiting for input
1 measurement in process
2 overflow (input too slow or nonexistent)
other counts in 1.085 µs intervals.

Related Topics: none

Error Presenta t ion :t ion :t ion :t ion :t ion : No errors reported (see Function
description above).

Example:
10 PRINT “This program lets you use the

frequency function”
20 PRINT “Apply the TTL frequency to pin *INT0

and/or *INT1”
30 CALL 0F070H: REM PERIOD COUNT ON *INT0

FUNCTION CALL
40 CALL 0F074H: REM PERIOD COUNT ON *INT1

FUNCTION CALL
50 CALL 0F078H: REM RETRIEVE COUNT ON *INT0
 FUNCTION CALL
60 POP PC0: REM GET THE PERIOD COUNT
70 IF (PC0=2) THEN PRINT “The frequency is too

low on *INT0": GOTO 130
80 IF (PC0=0.OR.PC0=1) THEN GOTO 50
90 P=PC0*1.085: REM PERIOD TIME CALCULATION FROM

COUNT VALUE
100 PRINT “The period on *INT0 is”,P,” µs. The

frequency is”,
110 F=1/P*1000000: REM FREQUENCY CALCULATION FROM

PC VALUE

120 PRINT F,” Hz”
130 CALL 0F07CH: REM RETRIEVE COUNT ON *INT1

FUNCTION CALL
140 POP PC1: REM GET THE PERIOD COUNT
150 IF (PC1=2) THEN PRINT “The frequency is too

low on *INT1": GOTO 210
160 IF (PC1=0.OR.PC1=1) THEN GOTO 130
170 P=PC1*1.085: REM PERIOD TIME CALCULATION FROM

COUNT VALUE
180 PRINT “The period on *INT1 is”,P,” µs. The

frequency is”,
190 F=1/P*1000000: REM FREQUENCY CALCULATION FROM

PC VALUE
200 PRINT F,” Hz”
210 PRINT “Hit a <cr> to take another sample”

:PRINT
220 IF (GET=0) THEN 220 ELSE GOTO 30
READY
>RUN

Program Output:
This program lets you use the frequency
function
Apply the TTL frequency to pin *INT0 and/or *INT1
The frequency is too low on *INT0
The period on *INT1 is 2164.575 µs. The frequency
is 461.9 Hz
Hit a <cr> to take another sample

4.5 Program EEPROM (PROGx)

Syntax: CALL {address}

Function: The BASIC program residing in RAM and the ap-
propriate header information (autostarting, baud rate, and
MTOP) is stored in EEPROM.

Mode: Command
Use: [PROG]

CALL 0FF00H
[PROG1]

CALL 0FF08H
[PROG2]

CALL 0FF10H
[PROG3]

CALL 0FF18H
[PROG4]

CALL 0FF20H

Description: These function calls act just like the BASIC-52
PROG commands. The BASIC commands are written for
EPROM. The EEPROM used here requires a different pro-
gramming algorithm. The PROG function call replaces the
BASIC PROG command and saves only the program. The
remaining PROGx function calls are similar in function to the
BASIC commands, but the function calls all save the pro-
gram and the startup characteristics in a single call.

Related Topics: PROG, PROG1, PROG2, PROG3, and
PROG4 (all BASIC commands)

12

DOMINO-2™

Error Presentation:
ABORT, PROGRAMMING ERROR!

[EEPROM life exceeded]
ABORTED, ILLEGAL ACCESS ATTEMPT!

[storage space exceeded]
ABORTED, UNKNOWN RESULT CODE!

[unknown error]
ABORTED, NOTHING TO PROGRAM!

[no program in RAM]

Example:
[Type in your program:]
10 PRINT"Hello World!"

[Type RUN to verify it executes properly:]
RUN

4.6 I2C Byte Transfers

Syntax: [send registered BYTE]
PUSH {slave address * 100H + slave register}
PUSH {8-bit value}
CALL {address}
POP {16-bit value}

[retrieve registered BYTE]
PUSH {slave address * 100H + slave register}
CALL {address}
POP {16-bit value}

[send BYTE]
PUSH {slave address * 100H + 8-bit value}
CALL {address}
POP {16-bit value}

[retrieve BYTE]
PUSH {slave address * 100H}
CALL {address}
POP {16-bit value}

Function: Communication is attempted with an I
2
C device.

An 8-bit value is passed to and from the device.

Mode: Command, Run

Use: where A=slave address
R=slave register
V=value to send
C=value retrieved

[send registered BYTE]
PUSH A*100H+R,V
CALL 0F128H
POP C

[retrieve registered BYTE]
PUSH A*100H+R
CALL 0F12CH
POP C

[send BYTE]
PUSH A*100H+V
CALL 0F120H
POP C

[retrieve BYTE]
PUSH A*100H
CALL 0F124H
POP C

Description: The address and register of the I
2
C slave de-

vice is passed on the stack. If an 8-bit value is to be sent, it
too must be pushed onto the stack. A call is then made to
send a message using the I

2
C bus (P1.7 CLK and P1.6

DATA). The routine returns a 16-bit value to the user on the
stack. The upper byte of the returned value is zero (000xxH)
if the transfer was successful. Otherwise, it is set to all 1s
(0FFxxH). If the function was to retrieve a byte, it is in the
lower 8 bits of the 16-bit return.

Related Topics: I
2
C Beeper, I

2
C Keypad, and I

2
C LCD. See

Appendix 2 for schematics.

Error Presentation: The upper 8 bits of the received byte
are masked to all 1s if the transmission is unsucessful or 0s
if all is OK.

Note: See section 6.0 for using the DOMINO-2 I2C
coprocessor.

Hello World!

>READY

[Now type the function call for PROG2:]
CALL 0FF10H

[you should see:]
STORING PROGRAM...
PROGRAM STORED!

[Whenever the power is disconnected and reconnected you
should see:]
Hello World!

DOMINO-2™

13

Example:
10 PRINT"Turn ON the beeper"
20 A=046H
30 V=0DFH
40 PUSH A*100H+V
50 CALL 0F120H
60 POP C
70 IF (C<>0) THEN GOTO 180
80 PRINT"Hit a key to turn it OFF"
90 G=GET
100 IF (G=0) THEN GOTO 90

110 V=0FFH
120 PUSH A*100H+V
130 CALL 0F120H
140 POP C
150 IF (C<>0) THEN GOTO 180
160 PRINT"Now it's OFF"
170 END
180 PRINT"Error in I2C communications"
190 END

4.6.1 I2C Beeper

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000110 and piezobeeper on bit 5.

Syntax: CALL {address}

Function: Bit 5 of the slave I/O expander is momentarily set
low to produce a short burst from an attached piezo-beeper.

Mode: Command, Run

Use: CALL 0F110H

Description: The pre-assigned I
2
C slave address 46H is

written to with a value of DFH to turn off bit 5. After a short
delay, a value of FFH is sent to turn bit 5 back on. The output
bit can sink 25 mA of current for, in this case, a piezoelectric
beeper.

Related Topics: I
2
C Keypad, I

2
C LCD. See Appendix 2 for

schematics.

Error Presentation: none

Example:
10 PRINT”Beep the beeper”
20 CALL 0F110H
30 PRINT”That’s it!”
40 END

14

DOMINO-2™

4.6.2 I2C Keypad

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000110 and input bits 0–4 from 74C922 data bits, input bit
7 from Q of 74HC74 clocked from grounded D by DAV from
74C922, and output bit 6 to set the 74HC74)

Syntax: [initialize]
CALL {address}

[hook into UI0/1 BASIC command]
CALL {address}

Function: The slave I/O expander is initialized by toggling
output bit 6 low and high to set the 74HC74. This clears the
DAV latch. The hook routines can be implemented to install
the keypad as the alternate console input device.

Mode: Command, Run

Use: [initialize]
CALL 0F100H

[hook into UI0/1 BASIC command]
CALL 0F108H

Description: To initialize the keypad, the pre-assigned I2C
slave address 46H is written to with a value of BFH to turn
off bit 6. A value of FFH turns bit 6 back on. The output bit
sets a 74HC74 latch clearing any DAV which may have
clocked the grounded D input. The DAV signal is generated
by a 74HC922 whenever a key is pressed. The keyboard
can be read through an I2C read BYTE routine. If bit 7 is low,
then the lower 4 bits contain keypad data. The user must
reinitialize the keyboard (clear the DAV) after each key read.

Alternatively, and much easier, the second function hooks
the keypad into the alternate console input device. Using the
hook function requires MTOP to be set to 3FFFH (although
the function call sets this, the user should be aware that any
variable used prior to this call is destroyed unless MTOP is
preset to 3FFFH at the beginning of a program). Custom
console input vector locations (4033H–4035H) and custom
console status check vector locations (4036H–4038H) are
set up in RAM.

Related Topics: I2C BYTE transfers, I2C LCD, UI0 and UI1
(BASIC commands). See Appendix 2 for schematics.

Error Presentation: none
Example:
10 MTOP=03FFFH
20 PRINT"Initialize the Keypad"
30 CALL 0F100H
40 PRINT"Hook into the alternate console input"
50 CALL 0F108H
60 PRINT"Hit a key on the keyboard to swap to
 keypad input"
70 G=GET
80 G=GET: IF (G=0) THEN GOTO 80
90 PRINT: PRINT"Now swapping to keypad input"
100 UI1: REM CHANGE TO ALTERNATE CONSOLE INPUT
110 PRINT"Hit a key on the keypad to swap to
 keyboard input"
120 G=GET
130 G=GET: IF (G=0) THEN GOTO 130
140 PRINT: PRINT"Now swapping to keyboard input"
150 UI0: REM CHANGE TO PRIMARY CONSOLE INPUT
160 GOTO 60

DOMINO-2™

15

4.6.3 I2C LCD

This function call assumes you’re using a Philips/Signetics
PCF8574 I2C 8-bit I/O expander with the slave address
01000010 and output bit 0–3 to the (LM034—4x20) LCD
data bits 4–7, output bit 4 to the LCD RS pin, and output bit
5 to the LCD E pin).

Syntax: [initialize]
CALL {address}

[clear display & home cursor]
CALL {address}

[display $(0) string]
CALL {address}

[display a character]
CALL {address}

[hook into UI0/1 BASIC command]
CALL {address}

Function: The LCD must be initialized through the slave I/O
expander. This sets up the LCD in nibble mode with a 4 ¥ 7
character matrix and invisible cursor. The LCD is cleared and
the cursor set to row1 column 1. Once initialized, the LCD
can be cleared and cursor sent home at any time. The first
string, $(0), can be directed to the LCD without using con-
sole redirection (UO1).

If you choose to use console redirection (UO1), the char-
acters are handled one at a time. Console redirection can be
invoked once the hooks are installed for the BASIC UI1 com-
mand.

Mode: Command, Run

Use: [initialize]
CALL 0F030H

[clear display & home cursor]
CALL 0F038H

[display $(0) string]
CALL 0F040H

[hook into UI0/1 BASIC command]
CALL 0F050H

Description: To initialize the LCD, the pre-assigned I2C
slave address 42H is used as an output port. The initializa-
tion data is sent to the output port to place the LCD in nibble
mode with a 4- × 7-character matrix and invisible cursor. The
clear display and home cursor function is called to complete
the initialization. Clearing the display and homing the cursor
can be used any time after the LCD has been initialized.
Since the LCD does not clear from the end of a print string to
the end of the LCD line, you will find this function call neces-
sary to keep the screen clean.

Displaying a string is easy without console redirection.
The first string, $(0), can be displayed on the LCD by using a
simple function call. This displays all characters in the string
(normally unprintable characters may be displayed as Kana
characters).

Alternatively, and much easier to use, the console output
device can be hooked in as the secondary or alternate out-
put device. The use of the BASIC UO1 command redirects all
output automatically to the LCD display. Once hooked, char-
acters are printed on a character by character basis. Charac-
ters between 20H and 7FH are displayed. Those above 7FH
are used as cursor control. A <cr> moves the cursor to the
beginning of the next (or first) line. Using the hook function
requires MTOP to be set to 3FFFH (although the function
call sets this, the user should be aware that any variable
used prior to this call is destroyed unless MTOP is preset to
3FFFH at the beginning of a program).

Custom console output vector locations (4030H–4032H)
and custom list@/print@ vector locations (403CH–403EH)
are set up in RAM.

NOTE: LCD output routines are considerably slower than
console output, therefore care must be taken when using re-
directed (UO1) output to the LCD while using the BASIC-52
interpreter’s INPUT $(0) command. Input characters can be
lost while the previous character’s ECHO is being displayed
when you run above 4800 bps. You can either use a data
rate of less than 9600 or redirect console output to the pri-
mary (serial port) until after the INPUT statement. Then,
when input is complete, redirect the console output to the
LCD and PRINT $(0).

Related Topics: I2C BYTE transfers, I2C Keypad, UI0 and
UI1 (BASIC commands). See Appendix 2 for schematics.

Error Presentation: none
Example:
[direct string output to the LCD]
10 MTOP=03FFFH
20 STRING 82,80
30 PRINT"Initialize the LCD"
40 CALL 0F030H
50 PRINT"Now all input strings will be displayed
 on the LCD"
60 INPUT $(0)
70 CALL 0F040H: REM PRINT $(0) TO LCD
80 GOTO 60

[redirecting the PRINT command to the LCD as the second-
ary console output device]
10 MTOP=03FFFH
20 STRING 82,80
30 PRINT"Initialize the LCD"
40 CALL 0F030H
50 PRINT"Hook into the secondary console output

(LCD)"
60 CALL 0F050H
70 PRINT"Now all further output will be dis

played on the LCD"
80 INPUT $(0)
90 UO1: REM CHANGE TO SECONDARY CONSOLE OUTPUT

DEVICE
100 PRINT $(0)
110 UO0: REM CHANGE TO PRIMARY CONSOLE OUTPUT

DEVICE
120 GOTO 70

16

DOMINO-2™

4.7 Utilities Version Number

Syntax: CALL {address}

Function: The CALL initiates a sign-on message displaying
the version number of the utilities presently installed.

Mode: Command, Run

Use: CALL 0FFF0H

Description: Version identification, which is embedded in
the utilities, is sent to the active console output.

5.0 CONTROLLING I/O BITS DIRECTLY
Since it isn't possible to directly set or reset bits on Port 3

from BASIC-52, it is necessary to call short machine
language routines to do the job. The routines consist of three
bytes. The first is either a SETB instruction (D2) or a CLR
instruction (C2). The second specifies a bit address. Finally,
the third is a RET instruction (22).

The following table details the necessary routines for
each of the Port 3 bits. The program example shows how to
insert the routines into memory from BASIC-52 and how to
call them.

Pin Bit Name To Set To Clear

P3.0 B0 RxD D2 B0 22 C2 B0 22
P3.1 B1 TxD D2 B1 22 C2 B1 22
P3.2 B2 Int 0 D2 B2 22 C2 B2 22
P3.3 B3 Int 1 D2 B3 22 C2 B3 22
P3.4 B4 T0 D2 B4 22 C2 B4 22
P3.5 B5 T1 D2 B5 22 C2 B5 22

NOTE: All data in BASIC-52 must befin with a numeric value
or else it is interpreted as a variable. (ex: xby(3200h) = 0D2)

DOMINO-2™

17

Example:
The following code is an example for using INT 1 (P3.3) as

an output bit.

100 MTOP=31000: REM Set MTOP Lower
110 XBY (32000)=0D2H: XBY(32001)=0B3h:
 XBY(32002)=022H
120 REM Put INT 1 Set Program at 32000

150 XBY(32100)=0C2H: XBY(32101)=0B3H:
 XBY(32102)=022H
160 REM Put INT 1 Reset Program at 32100
200 Call 32000: REM INT 1 On
210 Call 32100: REM INT 1 Off
222 Goto 200

Note: RAM locations and assembly code can be expressed
in decimal, hex, or both.

6.0 I/O COPROCESSOR

DOMINO-2 is equivalent to the original DOMINO-52/52A
plus additional I/O provided by an onboard I/O coprocessor.
The I/O coprocessor is connected to the BASIC processor
via the I2C bus. It provides 16 bits of high current drive digital
I/O, a hardware background PWM, and a RTClock/calendar.
The coprocessor can maintain the correct time and date
even if main power is removed by connecting an auxiliary
battery source to the Vbat input (Pin 2). Each of the 16
digital I/O pins can be individually programmed as either
input or output and they have the capability to directly drive
LEDs either sinking or sourcing current. Port A & B can only

DOMINO-2’s coprocessor is physically connected to the
BASIC processor’s I2C I/O lines (P1.7 and P1.6). These two
pins may also be used to add external I2C devices (see
section 4.6). With the exception of I2C expansion peripher-
als, these two lines should not be used for direct I/O .
Circuitry connected to these lines may interfere with the
coprocessor.

Coprocessor communications are handled as an I2C
register write or register read. The coprocessor is defined as
address 20H. There are 51 8-bit registers which can be
written to or read from. Each has a distinct address and
function. They are defined below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

+5

TX+

TX–

RX+

RX–

T1

T0

*INT1

*INT0

ADC1

ADC0

GND

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

+V

Vbat

PWM

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

TOP VIEW

P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0

GND

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

– Domino (original signals)

sink or source up to a combined total of 200mA.

18

DOMINO-2™

6.2 Requesting a Register Value from the Coprocessor

If you want to get the version number use R=7FH and
A=20H.

PUSH 207FH
CALL 0F12CH
POP C

If the variable 'C' has a value greater than 255, then it means
there has been a communications error with the coprocessor.
A value less than 255 represents the present Version
number.

6.1 DOMINO-2 Coprocessor Register Definitions

55H 85 PA_OUT5 PORT A Output Bit 5
56H 86 PA_OUT6 PORT A Output Bit 6
57H 87 PA_OUT7 PORT A Output Bit 7
58H 88 PB_OUT0 PORT B Output Bit 0
59H 89 PB_OUT1 PORT B Output Bit 1
5AH 90 PB_OUT2 PORT B Output Bit 2
5BH 91 PB_OUT3 PORT B Output Bit 3
5CH 92 PB_OUT4 PORT B Output Bit 4
5DH 93 PB_OUT5 PORT B Output Bit 5
5EH 94 PB_OUT6 PORT B Output Bit 6
5FH 95 PB_OUT7 PORT B Output Bit 7

60H 96 PWM_EN Start/Stop PWM Output
61H 97 PWM_P PWM Period Value
62H 98 PWM_D PWM Duty Cycle Value
63H 99 PWM_PRE PWM Period Prescale Value

70H 112 TIME_EN Start/Stop Real Time Clock/
Calendar

71H 113 TIME_S Seconds Register
72H 114 TIME_MI Minutes Register
73H 115 TIME_H Hours Register
74H 116 TIME_WD Day of the Week Register
75H 117 TIME_DA Day of the Month Register
76H 118 TIME_MO Month of the Year Register
77H 119 TIME_Y Year Register

7FH 127 VER Software Version Number

Register # Name Function
hex dec.

30H 48 PA_DIR Direction Control Register for
PORT A

31H 49 PA_IN PORT A Input Port
32H 50 PA_OUT PORT A Output Port
33H 51 PB_DIR Direction Control Register for

PORT B
34H 52 PB_IN PORT B Input Port
35H 53 PB_OUT PORT B Output Port

40H 64 PA_IN0 PORT A Input Bit 0
41H 65 PA_IN1 PORT A Input Bit 1
42H 66 PA_IN2 PORT A Input Bit 2
43H 67 PA_IN3 PORT A Input Bit 3
44H 68 PA_IN4 PORT A Input Bit 4
45H 69 PA_IN5 PORT A Input Bit 5
46H 70 PA_IN6 PORT A Input Bit 6
47H 71 PA_IN7 PORT A Input Bit 7
48H 72 PB_IN0 PORT B Input Bit 0
49H 73 PB_IN1 PORT B Input Bit 1
4AH 74 PB_IN2 PORT B Input Bit 2
4BH 75 PB_IN3 PORT B Input Bit 3
4CH 76 PB_IN4 PORT B Input Bit 4
4DH 77 PB_IN5 PORT B Input Bit 5
4EH 78 PB_IN6 PORT B Input Bit 6
4FH 79 PB_IN7 PORT B Input Bit 7

50H 80 PA_OUT0 PORT A Output Bit 0
51H 81 PA_OUT1 PORT A Output Bit 1
52H 82 PA_OUT2 PORT A Output Bit 2
53H 83 PA_OUT3 PORT A Output Bit 3
54H 84 PA_OUT4 PORT A Output Bit 4

To get a value from any of the coprocessor’s registers,
use the I2C retrieve registered byte command. A typical
BASIC-52 program is as follows (see Section 4.6 for I2C
generic command definition):

PUSH A*100H+R ; parameter setup
CALL 0F12CH ; I2C function
POP C ; parameter return

where:
A=20H the address of the coprocessor
R= the register number you wish to retrieve
C= the value returned by the CALL

Register # Name Function
hex dec.

DOMINO-2™

19

6.4 Digital I/O

Domino-2’s coprocessor adds 16 bits of digital I/O to the
BASIC processor’s original 14 TTL I/O bits (12 bits + 2 I2C
lines). These 16 bits are treated as two 8-bit ports. Each bit
has a direction control associated with it. The eight PA_DIR
bits define directions for PORT A and the eight PB_DIR bits
define directions for PORT B. When a direction control bit is
set to a 1, that port bit is defined as input. When a direction
control bit is set to a 0, that port bit is defined as an output.
The default directions at power up is for all PORT A and
PORT B bits to be defined as inputs. When a bit direction is
set as input, writing to it as an output bit will do nothing.
When a bit is set as an output, reading from it as an input will
merely reflect the logic state of its current output condition.

The logic state of an output pin can be changed by either
writing a full byte to the port register or a single bit to a bit

register. If PA0 (Pin 19) was configured as an output and you
wanted to set it to a logic high state, you can either write a
full byte PA_OUT with the least significant bit (LSB) set to a
1 (xxxxxxx1) or, you can write a 1 to PA_OUT0. PA_OUT
and PB_OUT require a byte value (00H–0FFH, 0–255) while
PA_OUT0–7 and PB_OUT0–7 require a bit value (0–1). .

When configured as inputs, an I/O pin’s logic state can be
retrieved with either a port-wide read or bit read. To deter-
mine whether PB0 (Pin 22) is high or low, you can either
read the PB_IN register where its least significant bit (LSB)
reflects the state of the PB0 pin or, you can read PB_IN0
directly. PA_IN and PB_IN retrieve byte-wide values (00H–
FFH, 0-255) while PA_IN0–7 and PB_IN0–7 retrieve bit
values (0–1).

6.5 PWM

The hardware PWM output uses four registers. The
PWM_EN register is the ON/OFF switch for the PWM
function. A 1 turns the function ON and a 0 turns the
function off. The other three registers control the PWM
timing. The PWM period (or frequency) is based on an 8-bit
clock value (PWM_P) and a prescale divisor (PWM_PRE).
The PWM prescale divisor (PWM_PRE) is set to values of 0,
1, or 4. A 0 means divide by 1; a 1 means divide by 4; and, a
2 means divide by 16.

Initialize the co-processor’s register.

First the period in µs = (PWM_P+1) * (prescale value of
PWM_P) = 100 * 4 = 400 µs
so set the PWM_P register with a value of 99,

6.3 Updating a Register Value to the Coprocessor

If you want to Start the RTClock/calendar use R=70H, V=1,
and A=20H.

PUSH 2070H,1
CALL 0F128H
POP C

If the variable C is greater then 255 then there has been a
communications error.

PUSH 2061H,99
CALL 0F128H
POP C

and the PWM_PRE with a value of 1 (1 represents a
prescale value of 4),

PUSH 2063H,1
CALL 0F128H
POP C

now the duty cycle in percent = 100 * PWM_D / (PWM_P+1)
= 100*50/100 = 50%

To place a new value into any of the coprocessor’s
registers use the I2C send registered byte command:

PUSH A*100H+R,V ; parameter setup
CALL 0F128H ; I2C function
POP C ; parameter return

where:
A=20H the address of the coprocessor
R= the register number you wish to send to
V=the value you wish to send
C= a value returned by the CALL

20

DOMINO-2™

PUSH 2062H,50
CALL 0F128H
POP C

Finally, the output can be enabled by setting the PWM_EN
register to 1:

PUSH 2060H,1
CALL 0F128H
POP C

The period register (PWM_P) can be any 8-bit value
(00H–0FFH, 0-255). The period is therefore (PWM_P+1) *
prescale value of (PWM_PRE) in uS or if PWM_P=99 and
PWM_PRE=1 then the period = 100*4 = 400 µs. The
frequency is therefore 1/period or 1/0.0004 = 2.5 kHz.

The duty cycle of this period is set using the PWM_D
register. The default duty cycle is 50%. The amount of time
the output stays high during the period is the ratio of the
PWM_D/(PWM_P+1). If a 25% duty cycle is needed the
PWM_D register is written with a value of 25 because 25/
(99+1)=0.25. The PWM output can be enabled or disabled
at any time. Changing the PWM_D register will not alter the
period (or frequency) of the PWM output.

6.6 Real-Time Clock/Calendar

The coprocessor has a built in real time clock/calendar. It
can be battery-backed with 3 V applied to the Vbat input
(Pin 2). An External diode is needed, please refer to Errata
sheet for details. The clock is enabled by writing a 1 to the
TIME_EN register. The time and date will continue to
increment as long as it is powered and enabled. The seven
time registers can be read from or written to at any time.

The TIME_S and TIME_MI registers holds the seconds

The day of the week is in the TIME_DW register (1=SUN-
7=SAT). The TIME_DA register holds the day of the month
(1–31). The month is presented in the TIME_MO (1–12)
register while the TIME_Y register has the year (00–99, with
auto rollover to 00 after 99). Hours are required to be in 24
hour format. Conversion and/or display in AM/PM format
should be done in the BASIC application program.

The utilities reside in the uppermost portion of the memory
map. The utilities are placed in nonvolatile memory so they
remain along with your saved autostarting BASIC program,
even after power has become disconnected. The user can take
advantage of updated utilities (when available) by simply re-
loading them. This is a two-step process.

First, a utilities loader program (LOADUTIL.BAS) is entered
into DOMINO-2. When this program is run, you are prompted
to download the actual utilities hex file (UTIL_xxx.HEX). The
LOADUTIL.BAS program reads in each paragraph of the hex
file, converting and storing it in RAM. When the hex file has

been read, “load successful,” “call address = xxxx,” and “total
checksum = xxxxx” messages are displayed. The total
checksum should match the one included in the UTIL_100.DOC
file. This file also contains any last-minute information you
should be aware.

Second, if you have verified that all is correct, you may trans-
fer the utilities using the direct command “CALL xxxx” as dis-
played in the above message. You get transfer status and a
sign-on banner when the utilities have been transferred into
nonvolatile EEPROM.

7.0 UPDATING THE DOMINO-2 UTILITIES

and minutes (0-59). The TIME_H contains the hours (0-23).

DOMINO-2™

21

Devices sold by Micromint are covered by the warranty and patent indemnification provi-
sions appearing in its Terms of Sale only. Micromint makes no warranty, express, statutory,
implied, or by description regarding the information set forth herein or regarding the free-
dom of the described devices from patent infringement. Micromint makes no warranty of
merchantability or fitness for any purposes. Micromint reserves the right to discontinue
production and change specifications and prices any time and without notice. This product
is intended for use in normal commercial applications. Applications requiring extended
temperature and unusual environmental requirements, or applications requiring high reli-
ability, such as military, medical life support or life-sustaining equipment, are specifically
not recommended without additional processing by Micromint for such application.

8.0 GETTING STARTED
Although you can use any communication software with

DOMINO-2, Host-52 is a convenient and friendly interface be-
tween your PC and DOMINO-2. Host-52 can be used on any
DOS-compatible PC with 640 KB of conventional memory. To
use Host-52 with DOMINO-2, you need two serial ports. COM1
for the serial connection to DOMINO-2 and COM2 for your
serial mouse. (If you use COM1 for your serial mouse, you
may select an alternate COM port for the DOMINO-2 through
the Serial Option of the Main Menu.)

Connect the DOMINO-2 hardware to the PC’s serial port
and turn on the power to the DOMINO-2. At this point, unless
you already have an autostart program in DOMINO-2, it waits
to receive a space character. (If you are using a simple comm
program like Procomm to communicate with DOMINO-2, re-
member that DOMINO-2 sets the baud rate when a space char-
acter is entered. Any other entry confuses DOMINO-2. You
also need to power DOMINO-2 off and on again if the first
character DOMINO-2 receives is NOT a space.)

From the DOS command line, type in Host-52 from the in-
stalled directory. Host-52 sets up the screen into windows. The
top window is the editing window where you input and revise
your programs. The middle window is the console output win-
dow where you see DOMINO-2’s output. The narrow bottom
window is the console input window where you can type direct
commands to DOMINO-2. You can activate either the editor
(top window) or the console (bottom two windows) by clicking
on them with the mouse.

Host-52 automatically sends out a space character in an
attempt to make contact with the DOMINO-2. You receive an
OK message if all is well.

Click on the top window. Host-52 automatically numbers
your BASIC program’s lines. Enter this single line where Host-
52 has entered the line number 10.

10 PRINT”Hello World”

Now click on the console window, then the PROGRAM item
of the menu bar, and then on SEND ALL. Host-52 sends the
BASIC code from its editor to DOMINO-2.

Click on the RUN item on the menu bar and then on START.
Host-52 passes the run command to DOMINO-2 and your pro-
gram executes (out of RAM).

Hello World
READY

>

You can start the program from the console input window by
typing:

RUN<cr>

Hello World

READY
>

This can be saved as an autostart program by typing:

CALL 0FF20H<cr>

SAVING PROGRAM...
PROGRAM SAVED!

Remove power from the DOMINO-2 and then power it back
up. The program automatically runs.

Hello World

READY
>

Please read the Host-52 Develop System for BASIC-52
CPUs for complete information on using Host-52, the BA-
SIC-52 Programming for more on BASIC’s command syn-
tax, and this manual for more on using the DOMINO and
DOMINO-2 Utilities.

22

DOMINO-2™

Ground

GND

DOMINO

Typical power and

communications connections

1

RS-422

1

Rx–

Rx+

Tx–

Tx+

Receive pair to transmitter

Transmit pair to receiver

+V

+5 V (regulated) or

+9–12 V (unregulated)

20

140

39

38

37

36

21

Bottom

View

RX–

TX+

GND

TX–
RX+

Ground

DOMINO

Typical power and

communications connections

+V

transmission paths and noise-cancelling techniques. This
distance is typically 4000′. This connection is shown in
Figure 2.

 RS-485 is similar to RS-422 with the exception that it
uses a single twisted pair in a half-duplex arrangement (i.e.,
+/–). This means data transmissions must use the same
twisted-pair path to travel in both directions, requiring a
simple protocol of only one unit seizing the transmission pair
at a time while all others listen. This connection is shown in
Figure 3.

APPENDIX 1.0

1.1 Sample Application: Communications

DOMINO-2 can communicate with other serial devices at
up to 19,200 bps. It can be connected in one of three
configurations: RS-232A, RS-422, or RS-485. DOMINO-2’s
RS-232A output can be used with most full-duplex PC-type
serial devices which normally handle RS-232C provided they
can reconcile receiving the lower-voltage transmit level of
RS-232A. This three-wire (Tx/Rx/GND) RS-232A connection
is created by using the RS-422 input receivers as simple
level-shifting inverters as shown in Figure 1. RS-422 is an
alternate full-duplex connection which uses two twisted-pair
transmission lines (i.e., Tx+/Tx–/Rx+/Rx–) offering long

Figure 2— Typical RS-422 connections

Figure 1— Typical RS-232A connections

Note: RS-485 requires master-slave protocol and direction control

Figure 3— Typical RS-485 connections

1

1

13

14

25

+5 V (regulated)

+9–12 V (unregulated)

RS-232A

PC-type

Serial Port20

140

21

Bottom

View

38

36
RX–

TX–

RS-485

1 –

+

Twisted pair to other

multidrop units

+5 V (regulated) or

+9–12 V (unregulated)

20

140

39

38

37

36

21

Bottom

View

GND

Ground

TX+

TX–

RX+

RX–

Bidirectional net

DOMINO

Typical power and

communications connections

DOMINO-2™

23

1.2 Sample Application: Analog Input Measurement

The DOMINO-2A contains an optional 2-channel, 12-bit
A/D converter. The converter is a Linear Technology
LTC1298. It is mounted internally in the A version, but can be
externally connected to a regular parallel I/O model
DOMINO-2. Both DOMINO-2 and DOMINO-2A firmware
support ADC calls for 8-bit (ADC0832) and 12-bit (LTC1298)
dual-channel ADC devices.

Figure 2— Typical connections for using DOMINO-2A with its internal ADC

In both applications, the ADC chip is connected to P1.7,
P1.6, and P1.5 as described in the pinout listing. When an
ADC is connected, these port lines share functions. The user
must take care not to confuse functions with random outputs
to these lines. The example below shows ADC connections
for using DOMINO-2A with the optional internal ADC or
DOMINO-2 with an external ADC attached.

Figure 1— Typical connections for using DOMINO-2 with a user-supplied external ADC

P1.7

LTC1298

+5

8

4

IN0

IN1

Vcc

GND

•CS

CLK

SOUT

SIN

LM34

temperature

sensor

LM34

temperature

sensor

+12

+12

2

3

2
1

7

6

5

12-bit ADC = 1.2 mV/bit (0.12° F) LM34 — National’s temperature sensor

 (or other similar device)

10 mV/°F

+V

+5 V (regulated) or

+9–12 V (unregulated)

20

140

21

Bottom

View

4

5

6

P1.6
P1.5

DOMINO-2

user-supplied

external ADC

LM34

temperature

sensor

GND

LM34

temperature

sensor

+12

+12

12-bit ADC = 1.2 mV/bit (0.12°F)

LM34 — National’s temperature sensor

 (or other similar device)

10 mV/°F

+V

+5 V (regulated) or

+9–12 V (unregulated)

20

140

21

Bottom

View

GND Ground

30
31ADC1

ADC0

DOMINO-2A

internal ADC

24

DOMINO-2™

1.3 Sample Application: Networking DOMINO-2

Multiple DOMINO-2s can be used in a networked
multidrop configuration using only a single twisted pair for
communication. Network protocol requires that only one unit
is allowed to transmit on the line at a time. All other units are
listening in receive mode.

This is accomplished by requiring one DOMINO-2 or a
device like a PC to be the net master. The master talks to
any slave unit either passing information to it or requesting
information from it. The slaves must never answer the mas-

ter until a response is requested. The master then relin-
quishes the net to that slave for the response and regains
the net when the slave is finished. This arrangement enables
multiple controllers to work together gathering numerous
inputs and controlling innumerable outputs, independent of
the system’s size.

+12

20

DOMINO-2 #3

1

LM35

Temperature

Sensor

40

Beeper

+

–
RW

1000 Ω

+

–

Twisted pair

RX 100 Ω

+V

DOMINO-2 #1

+

– +5

RZ 1k

+12
Relay 0

+12
Relay 1

+12
Relay 2

3

RY 1k

GND

21

Bottom

View

SW0SW1

PA0

PA1

PWM

+V

TX–

RX–

RX+

TX+

CH0

+12

20

DOMINO-2 #4

1

LM35

Temperature

Sensor

40

Beeper

GND

21

Bottom

View

SW0SW1

PA0

PA1

PWM

+V

TX–

RX–

RX+

TX+

CH0

+12

20

DOMINO-2 #2

1

LM35

Temperature

Sensor

40

Beeper

GND

21

Bottom

View

SW0SW1

PA0

PA1

PWM

+V

TX–

RX–

RX+

TX+

CH0

+

–

+12

20

140

GND

21

Bottom

View

TX–

RX–

RX+

TX+

CH0

3

3

4

4

4

2

5

1

2

5

1

2

5

1

DOMINO-2™

25

APPENDIX 2.0

Using Assembly Language Programs with DOMINO-2 (Utilities Version 1.3)

DOMINO-2 has become very popular in the world of
embedded control. This is primarily due to the programming
simplicity of DOMINO’s onboard BASIC interpreter.
DOMINO’s user-friendly programming environment gets the
application up and running in the shortest time possible.
Finally, because the application can be stored as a
nonvolatile auto-starting program directly in the onboard
EEROM, virtually nothing is required to go from a
development environment to turnkey production use.

For the most part we have succeeded in providing the
proper combination of high-level language performance and
ease of development and use. If users have ever expressed
a wishlist of improvements, it has only been an interest in
making it easier to incorporate and call assembly language
programs along with BASIC.

From day one, of course, DOMINO has had the capability
of calling an assembly language program. To get the
program into memory requires entering the program via
BASIC DATA statements and poking the program into a
specific memory address. Such a procedure is acceptable
for short programs.

As users apply DOMINO to increasingly sophisticated
applications, the demand to go beyond BASIC and a few

small assembly routines has also increased. In Version 1.3
of the DOMINO utilities, we have tried to address the wishes
of those who want to use larger assembly language
programs. Of course, given the physical hardware, not
everything is possible.

For a DOMINO-2 with V1.3 utilities (all DOMINOs can be
upgraded to the latest utility version), the programming
environment can be thought of as 4 different modes: BASIC
only; BASIC with callable assembly routine(s) entered via
DATA statements; BASIC with EEROM variable storage;
and, BASIC with callable small or large assembly routine(s)
entered via a hex download. The later 2 modes are new with
version 1.3. The major difference afforded with V1.3 is that
the entire contents of SRAM is now stored to EEROM, not
just the BASIC program. If that SRAM contains a large
assembly language program, both BASIC and that program
will be saved. Please note that executing an assembly
language program saved by that method requires the user to
follow a few rules regarding the ORG addresses. More on
this later. First, here is a description on each mode:

2.1 BASIC Only

DOMINO-2 was designed for use with the internally
masked BASIC interpreter. For most applications the BASIC
language will be sufficiently powerful.

2.2 BASIC with Included Routine in DATA Statements

 Advanced programmers might wish to get down to a
lower level to achieve maximum performance on a particular
routine. A CALL from BASIC can be made to either an
compiled or assembled routine. Small routines can be poked
into protected SRAM using DATA statements. This approach
keeps all the code, BASIC and assembly, in one easily
maintainable file. The following illustrates an assembly
program to toggle bit P3.5:

10 MTOP=1FFFH : REM PROTECT MEMORY ABOVE
1FFFH

20 FOR X=2000H to 2005H : REM ADDRESSES TO
PUT DATA

30 READ D : REM READ A BYTE OF DATA
40 XBY(X)=D : STORE THE DATA BYTE AT

ADDRESS x
50 NEXT X : REM DO MORE
60 REM YOUR PROGRAM GOES HERE
.
.

100 CALL 2000H : REM THIS CALL SETS OUTPUT
BIT P3.5 (T1)

.

.
200 CALL 2003H : REM THIS CALL CLEARS OUTPUT

BIT P3.5 (T1)
.
.
999 END
1000 DATA 0D2H, 0B5H : REM SETB P3.5
1010 DATA 022H : REM RETURN
1020 DATA 0C2H, 0B5H : REM CLR P3.5
1030 DATA 022H : REM RETURN

26

DOMINO-2™

2.3 BASIC and Large Assembly Code

At some point, your routines could become too large to
include as DATA statements. The STOREHEX.BAS program
provided will load your compiled or assembled .HEX file into
SRAM for a debugging session if it was ORG’d for the SRAM
addresses between 2000H and 6FFFH. Or, if it was ORG’d
for the EEROM (between 9000H and 0DFFFH) STORE-
HEX.BAS will relocate the load properly into SRAM so it will
be saved along with your BASIC program when using the
BASIC program save command ‘PROG’ (utilities V1.3).

Placing your routine in SRAM for debugging:
Assemble the routine using an ORG=2000H (or higher but

not extending beyond 6FFFH.)
Set MTOP to below ORG address to protect upper SRAM

MTOP=1FFFH (Remember to leave room for your
BASIC code).

Use STOREHEX.BAS to load in yourfile.HEX for SRAM.
Use NEW command to delete STOREHEX.BAS
Load in your BASIC application.
Test application.
Note: BASIC program must fit below MTOP. Assembled

routine must not extend beyond 6FFFH.

Placing your routine in SRAM for saving into EEROM:
Assemble the routine using an ORG=9000H (or higher

but not extending beyond 0DFFFH.)
Set MTOP as previous to protect upper SRAM.

MTOP=1FFFH (Remember to leave room for your
BASIC code).

Use STOREHEX.BAS to load in yourfile.HEX for
EEROM.

Use NEW command to delete STOREHEX.BAS
Load in your BASIC application.
Note: BASIC program must fit below MTOP. Assembled

routine must not extend beyond 0DFFFH. Save the
BASIC program (and your routine) using one of the
PROG calls (FF00h–FF20h).

2.4 Saving Configuration Variables

If your program needs to update some configuration
information as part of the executing application, refer to
SAVECFG.BAS program. You may include the appropriate
parts of this program which allows up to 60 floating point
numbers to be saved into 10 protected blocks of EEROM. 6
floating point numbers are stored into each 64 byte block
using a storage routine loaded from DATA statements. The
DATA statements are XBY’d into SRAM at 7000H and must
execute from this location. A 64 byte block of SRAM is set
aside at location 7FC0H–7FFFH. This PAGE is used as a
transfer buffer for any variables stored by the BASIC
application. A CALL 7000H unlocks and transfers this block
of DATA into the EEROM. The user is responsible for
placing the data into the block prior to calling the routine with
the PAGE number (0-9) at which to store it within the
EEROM. Although once stored the DATA can be retrieved
(read) directly from the EEROM (0F800H-0F83FH for PAGE

0) you may wish to move it down to the 64 byte SRAM block
to keep the bookkeeping straight.

Please keep in mind that unlike SRAM, EEROM can only
be written to a finite number of times (like SRAM, however it
can be read from an infinite amount). While the WRITE
endurance of the EEROM is in excess of 1,000 times, a
runaway routine could conceivably ruin the device in short
order if allowed to WRITE in a loop. Therefore do not use the
EEROM for DATA logging. If you must save something when
the power is off, use the configuration storage variable
technique described above just prior to powering the system
down.

Each DATA statement in the BASIC program is one
assembly language instruction. Line 1200 and 1210 actually
set the 10 page beginning address. Be careful if you make
any changes, a simple error may cause permanent and
irreversible damage to Domino, voiding any warranty.

2.5 Files On This Diskette

UTIL_130.HEX INTEL.HEX file of the V.1.3 Utilities
(use LOAD_130.BAS to reload into DOMINO)

LOAD_130.BAS Program written in BASIC to reload the
utilities (UTIL_130.HEX) into DOMINO

UTIL_130.DOC Revision summary and information on
reloading the utilities into DOMINO

STOREHEX.BAS Program written in BASIC to load a
compiled/ assembled routine into SRAM for debugging
or temporarily into SRAM for storage to the EEROM

SAVECFG.BAS Program written in BASIC which
demonstrates how floating point configuration values
may be stored and updated to/from EEROM

README.TXT

Errata

11/4/99

Domino 2 Modules
Starting from the date code 9944, the following engineering change has taken place
on the Domino 2.

Occassionally the Domino 2 will experience difficulty in resetting the Co-Processor
properly during a brief cycling of the power. To correct this problem Micromint has made a
change to the Domino 2 that allows the user the option of a faster reset on the Co-
Processor. U1 on the schematic demonstrates this. To battery back up the clock a 1N914
or equivalent diode must be placed externally on the Vbat line (U2 on the schematic). This
only applies to Domino 2's with the date code of 9944 or later.

DOMINO-2™

27

Intel Hex to
BASIC Data
Statement
Translator

Jeff Bachiochi

get a ton of ques-
tions each month

(by both phone and E-
mail) about using masked

BASIC-52 on the 8052 microcontroller.
The ever-increasing interest supports
my claim that BASIC offers a familiar
and friendly platform to learn embed-
ded control. To the seasoned veteran,
it also provides an inexpensive devel-
opment platform.

The whole thing started back in
1984 when Intel masked an 8-KB con-
trol-oriented BASIC interpreter, called
BASIC-52, into an NMOS 8052AH
DIP-style microcontroller. While Intel
no longer sells the chip, Micromint
continues to offer BASIC-52 masked
into low-power 8OC52 DIP and PLCC
packages.

with on-chip BASIC-52, writing
applications is a snap. No special com-
pilers or assemblers are needed. You
just attach a terminal (or PC terminal
emulator) and type the lines of BASIC
in directly. The results can be stored
and executed immediately right there
on the target system.

Debugging the application is also
painless since all variables can be dis-
played and BASIC lines edited at any
time. For the majority of applications,
BASIC is all you need to collect, trans-
form, or redirect data.

Of course, no single programming
language fits all control applications.
What a BASIC interpreter brings in
ease of use and program development,
it compromises in execution speed and
hardware to BASIC interfacing.

THE HARD FACTS
The 8031 core processor has four 8-

bit I/O ports. In an 8052 processor

with the masked BASIC, Port0 and
Port2 are used for the external address/
data bus. All eight bits on Port1 are
available through direct BASIC com-
mands. The bits on Port3 have mul-
tiple functions and are available, but
only through assembly instructions or
assembly routines called from BASIC.

Many applications don’t need more
than eight I/O bits. However, if you
need more, you can add external I/O
peripheral chips. These can be easily
accessed using traditional PEEK and
POKE-type BASIC commands.

Some peripherals require interrupts
for tasks which need to take prece-
dence over the BASIC program flow.
To facilitate this, BASIC-52 can di-
rectly respond to one of the two 803 l-
core external interrupts. It also can
support a l-s tic clock for interrupts
based on elapsed time. The interrupt
servicing speed remains that of BASIC.

THENEEDFORSPEED
When the execution speed of a BA-

SIC application program becomes
time-critical, consider supplementing
it with lower-level assembly language
for speed-sensitive tasks. The typical
execution time for a line of BASIC-52
is 230 ms, depending on the com-
mand. FOR/NEXT loops are the fastest
while P R I NT statements take consider-
ably longer than the average.

Although assembly language ex-
ecutes in microseconds, it generally
takes hundreds of lines of code to ac-
complish what a single line of BASIC
can do.

On the other hand, task-specific
assembly-language code (e.g., reading
and storing A/D conversions) is much
faster than interpreted BASIC (for a
compiled BASIC the difference is not
as significant).

CALL OF THE WILD
So, I contend that you should use a

BASIC interpreter whenever and wher-
ever it makes sense. When you need
more execution speed, consider com-
piled BASIC or callable task-specific
assembly language routines.

The BASIC-52 CALL 4200H state-
ment saves a pointer to the next line of
BASIC code on the stack and then
jumps blindly to the address you give

#67 February 1996 Circuit Cellar INK

it (in this case, 4200H). The pro-
cessor now expects to fetch an
assembly-language opcode to ex-
ecute.

That’s how your assembly
routine gains control from BASIC.
When your routine has finished,
the R ETurn opcode returns control
to BASIC. The pointer to the next
line of BASIC is popped off the
stack and execution of the BASIC
application continues.

I I EPROM

MTOP

8000H__________
7FFFH BASIC’s

variables
clrow down

b) OFFFFH

r-l

EPROM

8000H _______ __
MTOP 7FFFH

Let’s assume that all you need
to do is set and clear an I/O bit
normally unavailable to BASIC,
like Tl (P3.5). First, you need a
place in memory to store the rou-
tine. You might want to place the
routine in ROM above the space
where the BASIC program resides
in autostart mode.

Assembly
routine

BASIC’s
arrays

grow up
- - SRAM

End of BASIC varies
with program size

0
BASIC

Redirected
JUMP vectors

Lowered MTOP

End of BASIC varies
with program size

SRAM

There’s one problem with this
solution. You now have two pro-
grams which must be loaded prop-
erly, one BASIC and the other
assembly language. While this may not
sound like much of a problem, it can
be a bookkeeping nightmare for longer
programs, especially if you forget to
keep the files together for easy mainte-
nance.

Start of BASIC
application program

OOOOH

Figure 1-a) Af powerup, BASlC puts variable storage as high in RAM as possible. b) Modifying MOP protects a portion
of memory for use by assembly language routines.

RAM from 200H upward. As the first
statement, you need to add a line to
protect some memory for the assem-
bly-language routine.

these locations, I started my code at
4200H.

I suggest an alternative approach.
Try keeping the assembly routine as
part of the BASIC application program
using DATA statements. While this
approach involves an extra step to
protect the necessary RAM space and
poke the routine into memory each
time the application is run, the process
is quite straightforward. Just look.

This goal is accomplished by setting
the MT0 P variable to an address lower
than that set in the power-up initial-
ization. Let’s use 3FFFH, to give you
plenty of protected space.

Let’s try some something simple
like turning on or off bit B5H (P3.5
Tl), which you can’t do directly from
BASIC. You don’t need an assembler
for something this simple. It only
requires two opcodes: a S ETB (or C L R)
instruction and a RETurn.

10 MTOP=3FFFH

Notably, if your assembly-language
routine were only three bytes long (and
didn’t require the use an interrupt),
you would only have to protect three
bytes(l0 MTOP=7FFCH).

By referring to the micro’s data
book, you can find the correct bytes for
setting and clearing a bit. You can
place them into DATA statements like
this:

When you power up the 8OCS2
platform, you start out with an allo-
cated address space like that in Figure
la. The processor has measured the
amount of RAM you have in the sys-
tem and assigns it to the variable MT0 P
(let's assume MT0 P = 7FFFH for a
32.KB SRAM).

With MT0 P reassigned to 3FFFH,
you now have the address space allo-
cated as in Figure lb. Although you
may not require the interrupt jump
vectors which start at 4000H, I always
protect them but leave them free of
code. You may need them eventually.
(More on this later.) To stay clear of

10000 REM Set I/O bit Tl
10010 DATA OD2H, OB5H:

REM SETB Tl
10020 DATA 022H: REM Return
10030 REM Clear I/O bit Tl
10040 DATA OC2H, OB5H:

REM CLR Tl
10050 DATA 022H: REM Return

Begin by typing in (or downloading)
your BASIC-52 application. It fills The first data byte, D2H, is the

assembly-language
opcode for setting an
I/O bit. The second
byte, R5H, is the bit
address where the

: 20 4200 00 ~~ 7A operation is to be

Figure 2-a) A raw line of Mel hex looks like a jumble of characters. b) The line separated into its six major parts-start character, data performed. The
length, load address, mode, data, and checksum-becomes easier to deal with. source code for this

#67 February 1996 Circuit Cellar INK

opcode follows in a remark statement
for documentation purposes only.

In the second statement, 22H is an
opcode which returns control (in this
case, to BASIC]. This hand-coding
method can be used when there is
little chance for error.

You’re welcome to hand-code larger
routines, but be advised that it’s ex-
tremely easy to miscode a statement,
especially one with relative jumps and
such. Do it as a exercise, and back it
up with output from an assembler. It’s
bad enough when your routine doesn’t
run due to an error in logic. Don’t add
coding errors to your debugging ses-
sion!

Now, all you need to do is get these
six bytes into protected RAM where
they’ll be ready for you to call them.
I’ve suggested using 4200H as the
starting address. So, you need a BASIC-
52 routine which pokes the data bytes
into RAM at 4200H using the X B Y
statement. You can use a routine like
this:

20 FOR X = 4200H TO 4205H
30 READ V
40 XBY(X) = V
50 NEXT X

The FO R/N E X T loop assigns 4200H
to variable X It reads a byte and places
it into address location X. The address
is incremented, and the read-and-store
is repeated until X exceeds 4205H.

Once the data has been stored, it
remains in RAM until something over-
writes it or the power is cycled off and
on. Your BASIC application can CALL
4200H toset Tl and CALL 4203H to
clear Tl.

You can even make the calls from
the command-line prompt to test
them. You quickly discover that if you
make a call to a location which either
has no routine or has a miscoded rou-
tine, anything can ,happen.

Anything can include totally lock-
ing up the system, so you may wish to
both check your routine carefully and
make sure it’s there before you call it
(at least the first time). At a minimum,
at least ensure the first byte at the
location you call is correct.

You can also sum all the code you
placed in RAM and compare the total

Listing l--This program, wriffen in a generic PC BASIC, translates an Mel hex file into an 80C52 BASlC
program and loads the Mel hex data info SRAM.

10 CLS
2 0 FLAG=0
30 REM This program prompts for an Intel hex file name,
40 REM reads the file in, and creates an output file. The
50 REM file can be appended to a 8OC52 BASIC program to load your
60 REM assembly routine into SRAM (located in combined
70 REM Data/Code space) for execution there.
80 1NPUT"What is the Intel hex filename? ",A$
90 OPEN A$ FOR INPUT AS i/l
1oc
1 1 0
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

PRINT
PRINT"The output file will be called DATA.BAS."
1NPUT"What line number should it begin with? ",LINENUMBER
B$ = "DATA.BAS"
OPEN B$ FOR OUTPUT AS 112
IF EOF(1) THEN O$ = II": TEMP=LINENUMBER: GOT0 970
ON ERROR GOT0 950
INPUT i/l, I$
IF (MID$(I$,l,l) <> "."I THEN GOT0 930
PAIRCOUNT = VAL("&H"+MID$(I$,Z.Z))
LOADADDRESS = VAL("&H"+MID$(I$.4,4))
GOSUB 610
MODE = VAL("&H"+MID$(I$,8.2))
IF (MODE<>0 AND MODE<>11 THEN PRINT"Warning, mode must be 00"
IF (MODE=11 THEN PRINT"End of File"
FOR X=10 TO lO+(Z*(PAIRCOUNT-1)) STEP 2
IF (BYTECOUNT> THEN BYTECOUNT = 0: GOSUB 890:
LINENUMBER = LINENUMBER+lO

IF (BYTECOUNT= THEN 0s = II": TEMP=LINENUMBER: GOSUB 390:
GOSUB 580

O$ = O$ + 1, 0" + MID$(I$,X,2) + "H"
TOTALSUM = TOTALSUM + VAL("&H"+MIDB(IB.X.Z))
IF (BYTECOUNT<> THEN 08 = 08 +)1,"
BYTECOUNT = BYTECOUNT + 1
CHECKSUM = VAL("&H"+MID$(I$.10+2*PAIRCOUNT,2))
FOR COUNT = 2 TO 10+(2*(PAIRCOUNT-1)) STEP 2
CHECKSUM = CHECKSUM + VAL("&H"+MID$(I$,COUNT,2))
NEXT COUNT
IF (CHECKSUM AND 255) <> 0 THEN PRINT"Checksum error"
NEXT X
GOT0 150
REM Place the line number digits into a string
BLANKFLAG = 0
IF (TEMP<lOOOO) THEN GOT0 440
TEMPINTEGER = INT(TEMP/lOOOO): 08 = O$ + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOOOO: BLANKFLAG = 1
IF (TEMP<lOOO) THEN GOT0 470
TEMPINTEGER = INT(TEMP/lOOO): O$ = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOOO: BLANKFLAG = 1: GOT0 480
IF (BLANKFLAG= THEN O$ = 08 + "0"
IF (TEMP<lOO) THEN GOT0 510
TEMPINTEGER = INT(TEMP/lOO): 08 = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lOO: BLANKFLAG = 1: GOT0 520
IF (BLANKFLAG= THEN O$ = 08 + "0"
IF (TEMP<lO) THEN GOT0 550
TEMPINTEGER = INT(TEMP/lO): O$ = 08 + CHR$(TEMPINTEGER+48)
TEMP = TEMP TEMPINTEGER*lO: BLANKFLAG = 1: GOT0 560
IF (BLANKFLAG= THEN 08 = O$ + "0"
O$ = 08 + CHR$(TEMP+48)
RETURN
REM Add the word "DATA" to the string
O$ = 08 + " DATA '
RETURN
REM Track the start and finish address for each,segment
IF (FLAG<>01 THEN GOT0 650
START = LOADADDRESS: FINISH = LOADADDRESS + PAIRCOUNT 1:

#67 February 1996 Circuit Cellar INK

Listing P-continued

640 RETURN
650 IF (FINISH+l=LOADADDRESS) THEN FINISH = FINISH + PAIRCOUNT:

RETURN
660 GOSUB 690
670 FLAG = 0
680 GOT0 610
690 REM Append the loading routine for the DATA statement segment
700 IF (RIGHT$(O$,l)=", "1 THEN 08 = MID$(O$,l,LEN(O$)-1)
710 IF (RIGHT$(O$,l)<>" "1 THEN GOSUB 890:

LINENUMBER = LINENUMBER + 10
720 08 = IIn: TEMP = LINENUMBER: GOSUB 390
730 O$ = 08 +)I ST=0 : CT=": TEMP = TOTALSUM: GOSUB 390
740 GOSUB 890
750 LINENUMBER = LINENUMBER + 10
760 O$ = (1": TEMP = LINENUMBER: GOSUB 390
770 O$ = 08 + ' FOR X = '
780 TEMP = START: GOSUB 390
790 O$ = O$ + " TO "
800 TEMP = FINISH: GOSUB 390
810 08 = O$ + ’ : READ H : XBY(X)=H : ST=ST+H : NEXT X"
820 GOSUB 890
830 LINENUMBER = LINENUMBER + 10
840 08 = (1": TEMP = LINENUMBER: GOSUB 390
850 08 = 08 + ’ IF (CT<>ST) THEN PRINT (1
860 08 = 0$ + CHR$(34) + "DATA ERROR" + CHR$(34) + ’ : END":

GOSUB 890
870 LINENUMBER = LINENUMBER + 10: BYTECOUNT = 0
880 RETURN
890 REM Display and save present BASIC line
900 PRINT #2,0$
910 PRINT 08
920 RETURN
930 REM First character error in Intel hex paragraph
940 PRINT"Error. First character must be a I:"': CLOSE
950 REM Character error within Intel hex paragraph
960 PRINT"Error in input file": CLOSE: END
970 GOSUB 390: O$ = 08 + ' RETURN": GOSUB 890: CLOSE:

: END

END

INK@

to a known good total placed in the
BASIC program:

60 S = 0: C = 834
70 FOR X = 4200H TO 4205H
80 S = S + XBY(X)

90 NEXT X
100 IF (C<>S) THEN PRINT"Data

error": STOP

This is where I lose a bunch of
people. “I’m not gonna type in all
those DATA statements with the code
from my assembled source. My Intel
hex file is over 1 KB in size.”

There isn’t much I can say that
would convince them it would be
worth their while. So, this month I
present a piece of code, written in a
generic PC BASIC, which reads in an
Intel hex file and translates it into
BASIC-52 DATA statements. The out-

put can be appended to your BASIC-52
application program.

INTEL HEX FILES
When a source file is assembled

into a binary file, it contains no ad-
dress information and no way-other
than the file size-of assuring that the
file has not been corrupted. When the
binary file is translated into an Intel
hex file, it becomes protected, if you
will. The binary data is cut into small
chunks, called lines or paragraphs,
and surrounded by additional informa-
tion.

As you can see in Figure 2, each
Intel hex line begins with a ” : ” start
character followed by the number of
data bytes in the chunk (two hex char-
acters) OOH-FFH. (Note that the chunk
must have data bytes which can be
loaded into successive addresses.) To

#67 February 1996 Circuit Cellar INK

httu://uwu.hte.com

Table 2--8OC52 BASlC
remaps most of the
interrupt vectors up to the
4000H area in code
space.

Code space
address Function

to do a health
check on the data
when it loads it
into RAM from
within my 8OC52

4003H
400BH
4013H
401 BH
4023H
402BH
4030H
4033H
4036H
403CH
41 OOH-41 FFH

application program.
Additional blocks are translated the

same way. How, you might ask, can an
Intel hex file contain more than one
sequential block? For many files, it
won’t be. However, if you are using an
interrupt [i.e., serial or timer), the
processor has special preset locations
it calls when an enabled interrupt
occurs. Table 1 gives these interrupt-
vector locations for the 803 1 family.

In the 8OC52, the masked BASIC
has complete control of these locations
(remember, code space OOOO-1FFFH is
internal). Knowing that users might
want to access some of these inter-
rupts, BASIC shadows the jump vec-
tors to code space 4000H-41FFH,
where they are in external address
space. Since I use overlapping data and
code space (*PSEN OR’d with l RD],
this location is smack in the middle of
RAM.

Take a look at Figure 3 to see how
this problem is handled in the D EM0 1.
H E X file translation. Figure 3 shows
what happens when you run it. The
DATA. BAS file that is created can now
be appended to your application. Re-
member to add the MT0 P statement to
your application to protect some RAM
and add a GOSUB 10000 statement so
this appended portion loads the rou-
tines into protected RAM.

BASIC-52 application programs
which don’t use interrupts can safely
have BASIC program lines up through
this address space since the processor
won’t ever be calling this area. How-
ever, if you provide an assembly-lan-
guage routine using the interrupts, you
must protect the vector area by lower-
ing MTOP to 3FFFH. The interrupt
jump vectors are found at the locations
shown in Table 2.

Here’s a quick overview of just
what the translation program does.
Skip over lines 10000-10030 for a
moment. Notice lines 10040-10070.
Three data bytes are loaded into
0023H-0025H, an LJMP 424DH. This
is the serial-port interrupt. To allow
BASIC to connect, you must change
the load values from X=35 TO 37
(23H-25H) to X=16419 TO 16421
(4023H-4025H).

Next, a second jump vector is load-
ed (lines 10080-10110) at OOOBH-
OOODH. This LJMP 4242H is the
timer-O overflow interrupt. Change
line 10100 from X=11 TO 13 (OOOBH-
OOODH)toX=16395 TO 16397
(400BH-400DH) to allow BASIC the
hooks for this routine.

The vectors are called interrupt
jump vectors because the user is ex-
pected to place an L J M P XXXX at the
vector location to redirect the program
flow to the beginning of their routine
(i.e., XXXX).

The main body of data consists of
the actual routines which reside at
4200H (line 290, X=16896). No changes
need to be made here. h-i fact, if your
routines do not use interrupts, this one
block of code is all you most likely
will see.

For this reason, I like to stay out of Now, back to the first few lines.
the 4000H-41FFH area with my rou- This code was written to be in total
tines. Also, this use of vectors explains control of the processor and, as such,
how assembled code can be nonse- would normally get control from the
quential. If your assembly routine was reset vector at OOOOH. The first chunk

IEO (external interrupt 0)
TFO (timer 0 overflow)
IEl (external interrupt 1)
TFl (timer 1 overflow)
RI & TI (serial-port interrupt)
TF2 & EXF2 (timer 2/Capture) (80 x 2 only)
UOl (custom console output)
Ull (custom console input)
(custom console status check)
PRINTQ/LISTQ
CALL O-CALL 7FH

placed right at the jump vector loca-
tion, it

#67 February 1996 Circuit Cellar INK

of code is the reset vector jump. Since
BASIC-52 runs on powerup and this
vector is not shadowed like the others,
it can be discarded. Well, almost.

Instead, 4200H is the location BA-
SIC would call to enter the routine. In
this example, there is never a return to
BASIC. The assembly-language routine
completely takes over until power is
shut down. Here, BASIC loads the
jump vectors and routines-once it
passes execution over to the routine, it
is never heard from again.

This situation, of course, is the
extreme. Why bother at all with BA-
SIC once you are writing totally in
another language?

And rightly so. I do not advocate
the use of BASIC for every application.

As you have seen here, it is very
possible for BASIC-52 and assembly
routines to coexist. I hope I have dem-
onstrated a way you can use the 8OC52
to have your cake (the power of BASIC)
and eat it too (call on the speed of
assembly language). Remember, when
all you need to do is tap, don’t use a
sledge. q

/eff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.

His background includes product
design and manufacturing. He may be
reached at jeff.bachiochi@circellar.com.

But, I do like the friendly development 428 Very Useful
environment and the ease of getting an 429 Moderately Useful
application up and running. 430 Not Useful

What is the Intel hex filename? DEMOl.H:X

The output file will be called DATA.BAS. What line number should
it begin with? 10000

10000 DATA OOZH, 042H, OOOH
10010 ST=0 : CT=68
10020 FOR X = 0 TO 2 : READ H : XBY(X)=H : ST=ST+H : NEXT X
10030 IF (CT<>ST) THEN PRINT "DATA ERROR": END
10040 DATA OOZH, 042H. 04DH
10050 ST=0 : CT=145
10060 FOR X = 35 TO 37 : READ H : XBY(X)=H : ST= ST+H : NEXT X
10070 IF (CT<>ST) THEN PRINT "DATA ERROR" : END
10080 DATA OOZH, 042H, 042H
10090 ST=0 : CH=134
10100 FOR X = 11 TO 13 : READ H : XBY(X)=H : ST= ST+H : NEXT X
10110 IF (CH<>ST) THEN PRINT "DATA ERROR" END
10120 DATA OE4H, OF5H, 090H, OC2H, OD5H, OD2H, OD4H, 078H
10130 DATA 020H, OCZH, OD4H. 075H, 098H. 050H, 075H, 089H
10140 DATA OZOH, 075H, 08DH, OFDH, 085H, 08DH, 08BH, 075H
10150 DATA OB8H, OlOH, 075H, OA8H, 092H, 075H, 088H, 050H
10160 DATA 012H, 042H, 03FH, OFAH, OFBH, OF5H, 090H, OF4H
10170 DATA OF5H, 08CH, OEBH, 020H, OD5H, 004H, 003H. OOZH
10180 DATA 042H, 033H, 023H, OFBH, OF5H, 090H. 012H, 042H
10190 DATA 03FH. 06AH. 060H, OEEH, 06AH, 080H, OE4H, OE5H
10200 DATA OAOH, 022H, OCOH, OEOH, OB2H, OD5H, OEAH, OF4H
10210 DATA OF5H, 08CH, ODOH, OEOH, 032H, OCOH, OEOH, OCOH
10220 DATA ODOH, OCZH, 098H, 075H, ODOH, OlOH, OE5H, 099H
10230 DATA OF5H, OFOH, 064H, OODH, 070H, OOFH, 074H, OlFH
10240 DATA OC3H, 098H. OF4H, 060H, 013H, OFBH, OE4H, 018H
10250 DATA OF2H,,ODBH, OFCH, 080H, OOBH, 074H, 03FH, OC3H
10260 DATA 098H, OB3H, 050H, 004H, OE5H, OFOH, OF2H, 008H
10270 DATA ODOH, ODOH, ODOH, OEOH, 032H
10280 ST=0 : CT=18439
10290 FOR X = 16896 to 17020 : READ H : XBY(X)=H : ST=ST+H :
NEXT X
10300 IF (CHECKTOTAL<>STORETOTAL) THEN PRINT "DATA ERROR" : END

End of file OK

Figure 3-A ruun of fhe translation program demonstrates the kind of output you can expect from an Me/ hex

#67 February 1996 Circuit Cellar INK

