

Microcomputer/Controller Featuring the ATmega64 or the ATmega128

FEATURES

• Small size – complete computer/controller with I/O less

than 1.5 cubic inches (1.5” x 2.1” x 0.52)
• Low power only 275 mW typical
• Dual powered – operates on +5V or 6.5-20V at 55 mA

(typical)
• Program and Data Memories

 64k or 128k Bytes of In-System Reprogrammable
Flash with 10,000 Write/Erase Cycles

 In-System Programming by On-chip Bootloader
 2 or 4 K Bytes EEPROM with 100,000 Write/Erase

Cycles
 36K Bytes SRAM
 Programming lock for Software Security
 SPI interface for In-System Programming

• Peripheral Features

 Real-Time Clock Calendar
 Optional 2-channel 12-bit ADC
 8-channel 10-bit ADC

 8 Single-ended Channels
 7 Differential Channels
 2 Differential Channels with Programmable

Gain (1x, 10x, 200x)
 Byte-oriented Two-wire Serial Interface
 Dual Programmable Serial USARTs

 1 TTL
 1 RS-232A, RS-422, or RS485

 Master/Slave SPI Serial Interface
 Two 8-bit Timer/Counters with Separate Prescalers

and Compare Modes
 Two Expanded 16-bit Timer/Counter with Separate

Prescaler, Compare Mode, and Capture Mode
 Two 8-bit PWM Channels
 6 PWM Channels with Programmable Resolution

from 1 to 16 Bits
 Programmable Watchdog Timer with On-chip

Oscillator
 On Chip Analog Comparator
 29 Digital I/O that can sink or source 20mA

©2004, Micromint, Inc. REV 1.3 May 11, 2005 1
ATmega64, Atmega128 and AVR are trademarks of Atmel
AVRBL is a product of Progressive Resources LLC

 Micro64/128

ABSOLUTE MAXIMUM RATINGS

Operating Temperature:
 Commercial 0°C to +70°C referenced to GND
 Industrial -40°C to +85°C
Storage Temperature -50°C to +125°C
Voltage on +V (Pin 1) 0 to +16 VDC Unregulated
 referenced to GND

Voltage on +5V (Pin 40) 0 to +5.5 VDC Regulated

 With pin 1 open
Voltage on Vbat (pin 2) 0 to +5.5 VDC Regulated
 referenced to GND

Industrial temperature version is available; minimum quantities apply.

PIN DESCRIPTIONS

Micro64/128 is a 40-pin package (2.25” x 1.4” x 0.5”) with 0.1” pin and 1.2” row spacing. Some pins have multiple functions
depending on system configuration. DIO – Digital Input/Output

Pin Signal Description

 1 +V Micro64/128power supply input. +V is
 nominally 8-16 VDC. If pin 1 is open,
 Micro64/128 can be powered with +5 VDC
 directly on pin 40.

2 Vbat 2.5 VDC to 5.5 VDC Battery backup input
 for the optional Real-Time Clock Calendar.

3 PE3 DIO/AIN1/OC3A (Analog Comparator Trigger)
 Negative Input or Output Compare and
 PWM Output A for Timer/Counter3)

4 PD0 DIO/INT0/SCL (External Interrupt0 Input
 or I2C clock) Optionally used as the 12-bit
 ADC Chip Select .

5 PD1 DIO/INT1/SDA (External Interrupt1 Input
 or I2C data) Optionally used as the 12-bit
 ADC Data I/O .

6 PD5 DIO/XCK1 (USART1 External Clock
 Input/Output) Optionally used as the 12-bit
 ADC Clock .

7 PE4 DIO/INT4/OC3B (External Interrupt4 Input 16 PB3 DIO/MISO (SPI Bus Master Input/Slave
 or Output Compare and PWM Output for
 Timer/Counter 3)

8 PE2 DIO/AIN0/XCK0 (Analog Comparator
 Positive input or USART0 External Clock
 Input/Output)

Pin Signal Description

9 PE1 DIO/PD0/TXD0 (Programming Data Output
 or UART0 Transmit Pin)

10 PE0 DIO/PDI/RXD0 (Programming Data Input
 or UART0 Receive Pin)

11 PD4 DIO/IC1 (Time/Counter1 Input Capture

12 PB7 DIO/OC2/OC1C (Output Compare and
 PWM Output for Timer/Counter2 or Output
 Compare and PWM Output C for
 Timer/Counter1)

13 PB6 DIO/OC1B (Output Compare and PWM
 Output B for Timer/Counter1)

14 PB5 DIO/OC1B (Output Compare and PWM
 Output A for Timer/Counter1)

15 PB4 DIO/OC0 (Output Compare and PWM
 Output for Timer/Counter0)

 Output)

17 PB2 DIO/MOSI (SPI Bus Master Output/Slave
 Input)

18 PB1 DIO/SCK (SPI Bus Serial Clock)

2 ©2004, Micromint, Inc.

Micro64/128

Pin Signal Description

©2004, Micromint, Inc. REV 1.3 May 11, 2005 3

19 PB0 DIO/*SS (SPI Bus Slave Select)

20 GND Signal Point Analog and Digital Ground

21 GND Signal Point Analog and Digital Ground

22 PF0 DIO/ADC0 (10-Bit ADC Input Channel 0)

23 PF1 DIO/ADC1 (10-Bit ADC Input Channel 1)

24 PF2 DIO/ADC2 (10-Bit ADC Input Channel 2)

25 PF3 DIO/ADC3 (10-Bit ADC Input Channel 3)

26 PF4 DIO/ADC4/TCK(10-Bit ADC Input
 Channel 4 or JTAG Test Clock)

27 PF5 DIO/ADC5/TMS(10-Bit ADC Input
 Channel 5 or JTAG Test Mode Select)

28 PF6 DIO/ADC6/TDO (10-Bit ADC Input
 Channel 6 or JTAG Test Data Output)

29 PF7 DIO/ADC7/TDI (10-Bit ADC Input
 Channel 7 or JTAG Test Data Input)

30 ADC0 12-bit ADC Channel 0 Input, Input Range 0
 to +5VDC

31 ADC1 12-bit ADC Channel 1 Input, Input Range 0
 to +5VDC

32 PE6 DIO/INT6/T3 (External Interrupt 6 Input or
 Timer/Counter3 Clock Input)

Pin Signal Description

33 PE7 DIO/INT7/IC3 (External Interrupt 7 Input or
 Timer/Counter3 Input Capture Trigger)

34 PD6 DIO/T1 (Timer/Counter1 Clock Input)
 Serial Transmitter Disable Control

35 PD7 DIO/T2 (Timer/Counter2 Clock Input)

36 RX- RS-422/-485/-232A Inverted Serial (Receive
 Pair/Recxmit Pair/Receive)

37 RX+ RS-422/-485/-232A Noninverted Serial
 (Receive Pair/Rec-Xmit Pair)

38 TX- RS-422/-485/-232A Inverted Serial
 (Transmit Pair/Rec-Xmit Pair/Transmit)

39 TX+ RS-422/-485/-232A Noninverted Serial
 (Transmit Pair/Rec-Xmit Pair)

36 RX- RS-422/-485/-232A Inverted Serial (Receive
 Pair/Recxmit Pair/Receive)

40 +5V This is the internal reference voltage for the
 10 and 12 bit ADC. This output may be used
 to power minimal external circuitry or
 sensors. Micro64/128 may be powered on
+5V
 only through this pin, provided Pin 1 is left
 unconnected.

41 RESET When Brought to a logic low, RESET
 provides a master clear of the module

42 *PEN Programming enable pin for the SPI Serial
 Programming mode. By holding this pin low
 during a Power-on Reset, the device will
 enter the SPI Serial Programming mode. PEN
 has no function during normal operation.

ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
MECHANICAL AND ENVIRONMENTAL CHARACTERISTICS

Length 2.25 inches
Width 1.375 inches
Height 0.52 inches
Weight 45 grams
Operating Temperature 0°C to +70°C
 (Optional -40°C to +85°C)
Humidity 0 to 100% (noncondensing)

 Inches Millimeters

DIM min max min max

A 2.240 2.260 56.896 57.404

B 1.365 1.385 34.671 35.179

C 0.510 0.530 12.954 13.462

D 0.095 0.105 2.413 2.667

E 0.153 0.193 3.886 4.902

F 0.220 0.280 5.588 7.112

G 0.170 0.200 4.318 5.080

H 0.990 1.100 25.146 27.940

I 0.230 0.270 0.508 0.686

DC ELECTRICAL CHARACTERISTICS
Operating Temperature Ta = 0oC to + 70oC

Operating Voltage Vcc = 4.75 V to 5.5V
 Vss = 0.0 V

Characteristic Minimum Typical Maximum Units Condition
Supply Voltage
(VCC to Pin 40) 4.75 5 5.5 V
(+V to Pin 1) 6.5 9 16 V

(Vbat to Pin 2) 2.45 3 5.5 V
Supply Current (Icc) 55 80 mA

Input Low Voltage (VIL) -0.5 0.5 V
Input High Voltage (VIH) 3.5 5.5 V

Output Low Voltage (VOL) 0.7 V IOL = 20 mA, Vcc = 5V
Output High Voltage (VOH) 4.0 V IOH = -20 mA, Vcc = 5V

4 ©2004, Micromint, Inc.

Micro64/128

COMMUNICATION LINE DC ELECTRICAL CHARACTERISTICS
Characteristic Minimum Typical Maximum Units Condition

Differential Driver Output Voltage 5 V
Unloaded
See Note 1

RS-422 2 5 V R=50 Ohms
RS-485 1.5 5 V R=27 Ohms

Maximum Receiver Input voltage +/-14 V
ESD Protection 2000 V

12 BIT A/D CONVERTER CHARACTERISTICS
Characteristic Minimum Typical Maximum Units Condition

Resolution 12 bits
Integral Nonlinearity Error +/- 0.75 +/- 1.00 bits

Offset Error +/- 1.25 +/- 3 bits
Gain Error +/- 1.25 +/- 5 bits

Voltage Reference 4.75 5 5.5 V VREF is VCC

Analog Input Range VSS Vcc V
Sample Rate 22,600 per second

Note 1: RS-232A is characterized as a +/-5V bipolar signal
(as opposed to RS-232C at +/-12 V). Drivers and receivers are

actually RS-42 and the interface is an RS-423 connection
(single ended to differential).

1.0 Micro64/128 Hardware Overview

Micro64/128 is an industrial oriented controller in a 2.25” by
1.375” 40-pin DIP encapsulated package. It is a combination
of an Atmel AVR technology RISC microcontroller that
includes on chip Flash, EEPROM, SRAM, and other features,

an I2C Real-Time Clock/Calendar , and 32k of additional
SRAM. Optionally a 2-channel 12-bit ADC can be added.
Custom hardware configurations are available upon
request.

1.1 Atmega64 Microcontroller

 The Atmega64 has the following features available to the
Micro64 user: 64K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 2K bytes
EEPROM, 4K bytes internal SRAM, 32k bytes external
SRAM, 29 general purpose I/O lines, 32 general purpose
working registers, four flexible Timer/Counters with compare
modes and PWM, two USARTs, a byte oriented, Two-wire
Serial Interface, an 8-channel, 10-bit ADC with optional
differential input stage with programmable gain,
programmable Watchdog Timer with internal Oscillator, an
SPI serial port, and six software selectable power saving
modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to
continue functioning. The Power-down mode saves the

register contents but freezes the Oscillator, disabling all other
chip functions until the next interrupt or Hardware Reset. In
Power-save mode, the asynchronous timer continues to run,
allowing the user to maintain a timer base while the rest of the
device is sleeping. The ADC Noise Reduction mode stops the
CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions.
In Standby mode, the crystal is running while the rest of the
device is sleeping. This allows very fast start-up combined
with low power consumption. In Extended Standby mode,
both the main Oscillator and the asynchronous
timer continues to run.

©2004, Micromint, Inc. REV 1.3 May 11, 2005 5

ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
1.2 Atmega128 Microcontroller

 The ATmega128 has the following features available to
the Micro128 user: 128K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 4K bytes
EEPROM, 4K bytes internal SRAM , 32k bytes external
SRAM, 29 general purpose I/O lines, 32 general purpose
working registers, four flexible Timer/Counters with
compare modes and PWM, 2 USARTs, a byte oriented Two-
wire Serial Interface, an 8-channel, 10-bit ADC with optional
differential input stage with programmable gain,
programmable Watchdog Timer with Internal Oscillator, an
SPI serial port, and six software selectable power saving
modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to
continue functioning. The Power-down

mode saves the register contents but freezes the Oscillator,
disabling all other chip functions until the next interrupt or
Hardware Reset. In Power-save mode, the asynchronous
timer continues to run, allowing the user to maintain a timer
base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except
Asynchronous Timer and ADC, to minimize switching noise
during ADC conversions. In Standby mode, the crystal is
running while the rest of the device is sleeping. This allows
very fast start-up combined with low power consumption. In
Extended Standby mode, both the main Oscillator and the
Asynchronous Timer continue to run.

1.3 M41T80 I2C Real Time Clock

 The M41T80 I2C real time clock/calendar has a low
operating current of 200μA. Eight registers are used for the
clock/calendar function and are configured in binary coded
decimal (BCD) format. An additional 5 registers provide
status/control of an Alarm. Addresses and data are transferred
serially via a two line, bi-directional I2C interface. The built-
in address register is incremented automatically after each
WRITE or READ data byte.
 Functions available to the user include a time-of-day

clock/calendar and Alarm interrupts. The eight clock address
locations contain the century, year, month, date, day, hour,
minute, second and tenths/hundredths of a second in 24 hour
BCD format. Corrections for 28, 29 (leap year - valid until
year 2100), 30 and 31-day months are made automatically.
The Alarm interrupt’s output pin is connected PE5 (INT5) of
the Atmega64 or Atmega128. The I2C clock is connected to
PD0 and the data line is connected to PD1.

1.4 Optional MCP3202 12-bit ADC

 The MCP3202 is a successive approximation 12-bit
Analog to Digital Converter with on board sample and hold
circuitry. It is programmable to provide a single pseudo-
differential input pair or dual single-ended inputs.

Communication to the ADC is done using a bit banged SPI
bus. The ADC’s chip select is connected to PD0, the data in
and data out are connected to PD1, and the clock signal is
connected to PD5.

2.0 Memory Map

 Micro64 and Micro128 memory is broken up into three
different sections. Flash for program space, SRAM for
volatile data storage, and EEPROM for nonvolatile data
storage.

2.1 Micro64 Program Space

 Micro64 has a total of 64k of program space. The upper 2k
contains the bootloader and Micro64 Utilities. This leaves 62k
available for the end user.

6 ©2004, Micromint, Inc.

Micro64/128

2.2 Micro128 Program Space

 Micro64 has a total of 128k of program space. The upper
2k contains the bootloader and Micro128 Utilities. This leaves
126k available for the end user.

2.3 Micro64 & Micro128 SRAM Data Memory

 Micro64 and Micro128 have 36k of SRAM for volatile data
storage. The SRAM is broken up into three blocks. A two 4k
blocks and a 28k block. One of the 4k blocks resides inside the
ATmega64 or ATmega128 microcontroller. The 28k and the
other 4 k block reside external to the ATmega64 or ATmega128.
Micro64 and Micro128 Utilities uses 4 bytes in the 4k block.
The bytes that the utilities use are located from address 0FFBH
through 0FFFH.

2.4 Micro64 & Micro128 EEPROM Data Memory

 Micro64 contains 2k bytes of EEPROM data space. Micro128
contains 4k bytes of EEPROM data space. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access
between the EEPROM and the CPU is done with three registers.
The EEPROM Address Registers, the EEPROM Data Register,
and the EEPROM Control Register.

3.0 Micro64 & Micro128 Utilities

 Micromint has included utilities with it’s built in boot
loader. Not only do you have the power of a boot loader, but
you also have extra functions to help make your application
extremely easy to produce. These functions are loaded into

the upper 4k of the program space along with the bootloader
at the factory. The added functions include reading the 12-bit
ADC, reading and writing the real-time clock colander
registers, and using the I2C Bus.

3.1 Micro64 Utilities Function Calls

SRAM Address SRAM Address
0FFBH 0FFCH 0FFDH Feature Function

Functions
Address 0FFEH - 0FFFH

 12- bit ADC Single-ended CH0 07C04H Result
 Single-ended CH1 07BFDH Result
 Differential +/- (CH0-CH1) 07C0BH Result
 Differential -/+ (CH1-CH0) 07C12H Result

 RTC Read tenth of a second 07CF3H Result/Error
 Read seconds 07CF7H Result/Error
 Read minutes 07CFCH Result/Error
 Read hours 07D00H Result/Error

©2004, Micromint, Inc. REV 1.3 May 11, 2005 7
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
Micro64 Utilities Continued

SRAM Address SRAM Address
0FFBH 0FFCH 0FFDH Feature Function

Functions
Address 0FFEH - 0FFFH

 RTC Read the day of the week 07D05H Result/Error
 Read the day of the month 07D09H Result/Error
 Read the month 07D0DH Result/Error
 Read the year 07D11H Result/Error

 Data Write seconds 07D15H Result/Error
 Data Write minutes 07D1DH Result/Error
 Data Write hours 07D21H Result/Error
 Data Write the day of the week 07D29H Result/Error
 Data Write the day of the month 07D2DH Result/Error
 Data Write the month 07D31H Result/Error
 Data Write the year 07D35H Result/Error

 Read the alarm seconds 07D39H Result/Error
 Read the alarm minutes 07D3EH Result/Error
 Read the alarm hour 07D43H Result/Error
 Read the alarm day of the month 07D48H Result/Error
 Read the alarm month 07D4DH Result/Error

 Data Write the alarm seconds 07D58H Result/Error
 Data Write the alarm minutes 07D6BH Result/Error
 Data Write the alarm hour 07D7EH Result/Error
 Data Write the alarm day of the month 07D91H Result/Error
 Data Write the alarm month 07DA4H Result/Error

 Enable the alarm 07DB9H Result/Error
 Disable the alarm 07DC7H Result/Error
 Set the alarm to repeat every second 07DD2H Result/Error
 Set the alarm to repeat every minute 07DFBH Result/Error
 Set the alarm to repeat every hour 07E24H Result/Error
 Set the alarm to repeat every day 07E4DH Result/Error
 Set the alarm to repeat every month 07E76H Result/Error
 Set the alarm to repeat every year 07EA2H Result/Error
 Read the alarm flags 07ECBH Result/Error

 I2C Byte Transfer Initialize the I2C at 400kHz 07C20H
 Initialize the I2C at 100kHz 07C23H

Slave Address Register Read registered byte 07C4DH Result/Error
Slave Address Register Data Send register byte 07C8AH Result/Error
Slave Address Data Send Byte 07CB8H Result/Error
Slave Address Read Byte 07CDDH Result/Error

 Disable the I2C 07C37H

 Utilities Version Number 07C19H Result

8 ©2004, Micromint, Inc.

Micro64/128

3.2 Micro128 Utilities Function Calls
SRAM Address SRAM Address

0FFBH 0FFCH 0FFDH Feature Function
Functions
Address 0FFEH - 0FFFH

 12- bit ADC Single-ended CH0 0FC09H Result
 Single-ended CH1 0FC02H Result
 Differential +/- (CH0-CH1) 0FC10H Result
 Differential -/+ (CH1-CH0) 0FC17H Result

 RTC Read tenth of a second 0FCF8H Result/Error
 Read seconds 0FCFCH Result/Error
 Read minutes 0FD01H Result/Error
 Read hours 0FD05H Result/Error
 Read the day of the week 0FD0AH Result/Error
 Read the day of the month 0FD0EH Result/Error
 Read the month 0FD12H Result/Error
 Read the year 0FD16H Result/Error

 Data Write seconds 0FD1AH Result/Error
 Data Write minutes 0FD22H Result/Error
 Data Write hours 0FD26H Result/Error
 Data Write the day of the week 0FD2EH Result/Error
 Data Write the day of the month 0FD32H Result/Error
 Data Write the month 0FD36H Result/Error
 Data Write the year 0FD3AH Result/Error

 Read the alarm seconds 0FD3EH Result/Error
 Read the alarm minutes 0FD43H Result/Error
 Read the alarm hour 0FD48H Result/Error
 Read the alarm day of the month 0FD4DH Result/Error
 Read the alarm month 0FD52H Result/Error

 Data Write the alarm seconds 0FD5DH Result/Error
 Data Write the alarm minutes 0FD70H Result/Error
 Data Write the alarm hour 0FD83H Result/Error
 Data Write the alarm day of the month 0FD96H Result/Error
 Data Write the alarm month 0FDA9H Result/Error

 Enable the alarm 0FDBEH Result/Error
 Disable the alarm 0FDCCH Result/Error
 Set the alarm to repeat every second 0FDD7H Result/Error
 Set the alarm to repeat every minute 0FE00H Result/Error
 Set the alarm to repeat every hour 0FE29H Result/Error
 Set the alarm to repeat every day 0FE52H Result/Error
 Set the alarm to repeat every month 0FE7BH Result/Error
 Set the alarm to repeat every year 0FEA7H Result/Error
 Read the alarm flags 0FED0H Result/Error

©2004, Micromint, Inc. REV 1.3 May 11, 2005 9
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
Micro128 Utilities Continued

SRAM Address SRAM Address

0FFBH 0FFCH 0FFDH Feature Function
Functions
Address

0FFEH -
0FFFH

 I2C Byte Transfer Initialize the I2C at 400kHz 0FC25H

 Initialize the I2C at 100kHz 0FC28H
Slave Address Register Read registered byte 0FC52H Result/Error
Slave Address Register Data Send register byte 0FC8FH Result/Error
Slave Address Data Send Byte 0FCBDH Result/Error
Slave Address Read Byte 0FCE2H Result/Error

 Disable the I2C 0FC3CH

 Utilities Version Number 0FC1EH Result

4.0 Micro64/128 Software

 When it comes from the factory, the Micro64/128 has no
software on the board itself. Programs are developed using
cross-development tools running on a desktop PC and is

programmed into the Micro64/128 for execution. There are
several development environments from which to choose.

4.1 Assembly

 Any cross assembler capable of creating programs for
Atmel’s Atmega64 or Atmega128 microcontroller can be
used to write assembly language programs for the
Micro64/128. Atmel’s assembler is available for free by
downloading it at www.atmel.com/products/avr/

 Other cross assemblers may be found by looking under
“Third Party Support” on the website above.

4.2 BASCOM-AVR BASIC Compiler

 BASCOM-AVR has a complete Windows IDE (Integrated
Development Environment) with a Terminal Emulator. It is a
structured BASIC with labels, that have statements highly
compatible with Microsoft’s Quick BASIC and Visual
BASIC. BASCOM AVR supports IF-THEN-ELSE-END IF,
DO-LOOP, WHILE-WEND, SELECT- CASE and in line
assembly. It has a large set of Trig Floating point functions.
Variables and labels can be 32 characters. Bit, Byte, Integer,
Word, Long, Single, and Strings are supported for variable
types.
 A bit is 1/8 of a byte and can only be a 1 or a 0. A byte is
stored as an unsigned 8-bit binary number ranging in value

from 0 to 255. An integer is stored as a signed sixteen-bit
binary number ranging in value from -32,768 to +32,767. A
word is stored as an unsigned sixteen-bit binary number
ranging in value from 0 to 65535. A long is stored as signed
32-bit binary number ranging in value from -2147483648 to
2147483647. A single is stored as a signed 32 bit binary
number. Ranging in value from 1.5 x 10^–45 to 3.4 x 10^38.
A string is stored as bytes and is terminated with a 0-byte. A
string dimensioned with a length of 10 bytes will occupy 11
bytes of memory. For more information please visit
www.mcselec.com .

10 ©2004, Micromint, Inc.

http://www.atmel.com/products/avr/
http://www.mcselec.com/

Micro64/128

4.3 CodeVisionAVR C Compiler

 CodeVisionAVR runs under Windows 95, 98, Me, NT 4.0,
2000 and XP. It is an easy to use integrated development
Environment with a built-in serial communication terminal
for debugging and has an editor with auto indentation and
keywords highlighting. The C Compiler supports bit, char,
int, short, long, and float data types.

 It also has supplementary libraries for Alphanumeric LCD
modules for up to 4x40 characters, Philips I²C Bus, National
Semiconductor LM75 Temperature Sensor, Dallas DS1621
Thermometer/Thermostat, Philips PCF8563 and PCF8583
Real Time Clocks, Dallas DS1302 and DS1307 Real Time
Clocks, Dallas 1 Wire protocol, Dallas DS1820/DS1822 1
Wire Temperature sensors, Dallas DS2430/DS2433 1 Wire
EEPROMs, SPI, Power management, Delays, BCD and Gray
code conversion.
 The compiler comes with a built-in CodeWizardAVR
Automatic Program Generator, that allows you to write in a

matter of minutes all the code needed for implementing the
following functions: External memory access setup, Chip
reset source identification, Input/Output Port initialization,
External Interrupts initialization, Timers/Counters
initialization, Watchdog Timer initialization, UART
initialization and interrupt driven buffered serial
communication with the following parameters: 7N2, 7E1,
7O1, 8N1, 8N2, 8E1 and 8O1, Analog Comparator
initialization, ADC initialization, SPI Interface initialization,
I²C Bus, LM75 Temperature Sensor, DS1621
Thermometer/Thermostat, PCF8563, PCF8583, DS1302 and
DS1307 Real Time Clocks initialization, 1 Wire Bus and
DS1820/DS1822 Temperature Sensors initialization, and
LCD module initialization. For further information please
visit http://www.hpinfotech.ro .

5.0 Programming the Micro64/128
The user-programmable part of the Micro64/128 uses Atmel’s
Atmega64 or Atmega128 FLASH micro-controller that can be
reprogrammed thousands of times. These programs can be
created using a number of resources, as described above.

Programming the Micro64/128 is done through USART1, the
RS232a/RS422/RS485 serial port, by using the Micro64/128
Boot Loader IDE. The Micro64/128 cannot be programmed
over a RS485 network.

5.1 Using the Boot Loader IDE
 The Boot Loader IDE comes free with the Micro64 and the
Micro128. It is used to program a program and data EEPROM
files into the module. It is very easy to use. There are only six
steps to send a program to the Micro64/128.

Step
1. Open the Boot Loader IDE.
2. Select the appropriate COM Port.
3. Click on the top “Browse” button to find the program you
want to send to the Micro64/128.
4. Optional Step: Click on the bottom “Browse” button to
find the EEPROM file you want to send to the Micro64/128.
5. Click on the “Download” button to send the files.
6. Apply power to the board or reset the module.

©2004, Micromint, Inc. REV 1.3 May 11, 2005 11
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

http://www.hpinfotech.ro/

 Micro64/128
5.2 Boot Loader Programming Protocol
After the Boot Loader is started (via a reset or a power-up), the following protocol must be observed:

1. 1. Upon power-up or reset Boot Loader sends a ‘^’
(BOOTLOADER_ACTIVE_CHAR) at 115,200 bits
per second (bps) using X-ON/X-OFF handshaking.

2. The host is then required to send the three-character

entry sequence of ’@&$’. This is used to prevent an
inadvertent attempt of reprogramming from taking
place. If the Boot Loader does not receive these
characters within the timeout period of 5 seconds,
the Boot Loader tests to see if there is code located
in the main application area of flash. If there is, then
the Boot Loader jumps to it, otherwise, execution
stays within the Boot Loader indefinitely, waiting for
the entry sequence.

3. Once the three-character entry sequence has been

sent, the Boot Loader sends the version string
(Vx.xx) followed by a ‘?’ (READY_CHAR).

4. Upon receipt of the READY_CHAR, the host

application should send the hex file for the
new/updated application program observing an X-
ON / X_OFF handshaking protocol to control data
flow. The handshaking is very important as the flash

 memory area writes much more slowly than the
serial port can send data. The programming software
continues sending the hex file until it is all sent.
After each line of “.hex” file is received by the Boot
Loader, one of three characters is transmitted by the
Boot Loader:

- ‘~’ Line received with no errors.
- ‘%’Line received with no error, but an error

occurred while flashing.
- ‘-‘Checksum error detected while receiving

the line.

5. After the programming is complete, the Boot Loader
sends either a ‘#’, meaning the programming is all
right, or and@’ indicating that an error has occurred
and the program did not load successfully. In most
cases an error during programming means that the
main application program is corrupted and will need
to be resent.

6. The Micro64 Boot Loader then starts the newly

programmed application software. As stated in step
2, the Micro64 Boot Loader tests to see if there is
code located in the main application area of flash. If
there is, the Micro64 Boot Loader jumps to it,
otherwise, execution stays within the Micro64 Boot
Loader indefinitely, waiting for the entry sequence

12 ©2004, Micromint, Inc.

Micro64/128

6.0 Micro64/128 Development Board

 The Micro64/128 Development Board was designed, for
use as an evaluation platform, for prototyping additional
circuitry around applications using the Micro64/128.

6.1 Development Board Power Supply

 An unregulated 12 VDC wall transformer with a 2.5mm
power plug is supplied to power the board. The plugs center
tap should be negative. A diode (D1) will protect the
regulator if a power supply with he wrong polarity is
accidentally plugged in. The development board can power

the Micro64/128 with a regulated +12VDC by placing a
jumper on JP1 or with a regulated +5V by placing a jumper
on JP2. NOTE: Inserting jumpers on both JP1 and JP2
will damage the module.

6.2 Jumper Descriptions
 There are twenty-two jumpers on the development board. Figure 4-1 list each jumper and what they are connected to.

Figure 4-1 Development Board Jumper Descriptions

©2004, Micromint, Inc. REV 1.3 May 11, 2005 13
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
6.3 Serial Communication

 The development board can be configured to have the
Micro64/128’s USART1 communicate in RS-232, RS-422,

and RS-485. It also has the ability to configure USART0 to
communicate in RS-232.

6.3.1 USART1 as RS-232.
 In order to use USART1 for RS-232 communications the
user must take into account the following jumpers JP3, JP4,
JP7, JP12, and JP13. The RS-232 connection is made using a
DB-9M and connecting it to the development boards, DB-9F,
J2 connector. JP12 connects TX+ (pin 39 of Micro64/128) to
the RS-232 driver chips T1IN signal (pin 11 of U5). JP13
connects RX+ (pin 37 of Micro64/128) to the RS-232 driver
chips R1OUT signal (pin 12 of U5). Since the Micro64/128
uses a differential receiver, 2.5 VDC must be connected to
RX- (pin 36 of Micro64/128). By placing a jumper on JP7,
2.5VDC is applied to RX-. JP3 is used to connect either the
receiving or transmitting signal to pin 3 of J2’s DB-9F. JP4 is
used to connect either the receiving or transmitting signal to
pin 2 of J2’s DB-9F. If the user were going to communicate to
a Personal Computer they would need to put jumpers on JP7,
JP12, JP13, JP3 pins 1&2, and JP4 pins 2&3. Figure 4-2
illustrates what the jumpers might look like.

Figure 4-2 USART1 Jumper Configurations for Connecting
to a PC

6.3.2 USART1 as RS-422

 RS-422 communications require two twisted pairs. One
pair connects the console transmitter to Micro64/128’s
receiver while the second pair connects the console receiver
to Micro64/128’s transmitter.
 RS-422 uses two unidirectional data paths – one path for
each direction. The data transmission is differential, enabling
the noise picked-up on the pairs to cancel itself out. Each
twisted pair should have termination enabled at each end of
the line. Pull-up and pull-down termination may be required,
but only at one end of each pair.

 The only jumpers that are associated with RS-422
communications are JP16, JP17, and JP18 if termination is
necessary. The twisted wire pairs should be connected to the
screw terminals J7. J7 pin 1 is for TX+, pin 2 is for TX- , pin
3 is for RX+ and pin 4 is for RX-. JP16, JP17 and JP18 are
the jumpers used for terminating the network. Since
termination is needed to match the impedance of a node to
the impedance of the transmission line the termination (R7),
pull-up (R5) and pull-down (R6) resistors are not populated
by the factory.

6.3.3 USART1 as RS-485

 RS-485 communication requires one twisted pair to
connect the console to Micro64/128. RS-485 uses one data
path, so the drives at each end must NOT be enabled at the
same time. The user is responsible for NOT breaking this
rule.
 The easiest protocol to follow is a master/slave(s)
relationship, were the slaves DO NOT enable their transmitter
(respond) unless the master asks them to. The data
transmission is differential allowing picked up noise to cancel
itself out. The twisted pair should have termination enabled at
each end of the line. Pull-up and pull-down termination may
be required, but only at one end of the pair.

 The only jumpers that are associated with RS-485
communications are JP14, JP15, JP16, JP17, and JP18 if
termination is necessary. JP14 is used to connect the positive
side (TX+ & RX+) of the network together and JP15 is used
to connect the negative (TX- & RX-) side together. The
twisted wire pair should be connected to the screw terminal J7
pin 1 or 3 for the positive side and pin 2 or 4 for negative
side. JP16, JP17 and JP18 are the jumpers used for
terminating the network. Since termination is needed to
match the impedance of a node to the impedance of the
transmission line the termination (R7), pull-up (R5) and pull-
down (R6) resistors are not populated by the factory.

14 ©2004, Micromint, Inc.

Micro64/128

6.3.4 USART0 as RS-232

 In order to use USART0 for RS-232 communications the
user must take into account the following jumpers JP5, JP6,
JP10, and JP11. The RS-232 connection is made using a DB-
9M and connecting it to the development boards, DB-9F, J3
connector. JP10 connects PE1 (USART0’s transmit pin and
pin 9 of Micro64/128) to the RS-232 driver chips T2IN signal
(pin 10 of U5). JP13 connects PE0 (USART0’s receive pin
and pin 10 of Micro64/128) to the RS-232 driver chips
R2OUT signal (pin 9 of U5). JP6 is used to connect either the
receiving or transmitting signal to pin 3 of J3’s DB-9F. JP5 is
used to connect either the receiving or transmitting signal to
pin 2 of J3’s DB-9F. If the user were going to communicate to
a Personal Computer they would need to put jumpers on JP7,
JP12, JP13, JP3 pins 1&2, and JP4 pins 2&3. Figure 4-3
illustrates what the jumpers might look like.

Figure 4-3 USART0 Jumper Configurations for Connecting
to a PC

6.4 Micro64/128 Connections
 All of the Micro64/128’s signals except for VBAT,
*RESET, TX+, TX-, RX+, and RX- are brought out to four
2x8 headers (J8, J10, J13, & J15) and four 1x8 plated through
solder holes (J9, J11, J12, & J14). Please refer to figure 8 for
their pin out. J16, J17, J18, J19 and J20 are connected to the
development boards power supply and can be used to power
your external circuitry and are located above the prototyping
area. VBAT can be connected to either a coin cell battery or a
Super Capacitor. If the user chooses to backup the real-time
clock with a battery, a coin cell battery holder (V1) and a 0
ohm resistor (D2) would have to be installed on the board.
The 0 ohm resistor instead of a diode would need to be
installed because the Micro64/128 already has a diode built
in. To back-up the real-time clock with a super capacitor, two
1k resistors need to be installed in R1 and R2, a BAT85
Diode needs to be installed in D3 and the 1 Farad Super
Capacitor needs to be installed in C3. The RESET pin for
Micro64/128 is connected to a pushbutton located near the
power connector. The user can press and release the
pushbutton to reset the Micro64/128.

Figure 4-4 Micro64/128 Connections

©2004, Micromint, Inc. REV 1.3 May 11, 2005 15
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128 Micro64/128

16 ©2004, Micromint, Inc.

6.5 Development Board Schematic

16 ©2004, Micromint, Inc.

Micro64/128

Appendix 1.0

1.1 Sample Application: Communications

 Micro64/128 can communicate with other serial
devices at up to 230.4 kbps. Usart1 can be connected
in one of three configurations: RS-232A, RS422, and
RS-485. Micro64/128’s RS-232A output can be used
with most full duplex PC-type serial devices which
normally handle RS-232C provided they can
reconcile receiving the lower-voltage transmit level
of RS-232A. This three wire (Tx/Rx/GND) using the
RS-422 input receivers as simple level-shifting
inverters as shown in Figure 1 creates RS-232A
connection. If the user needs the full voltage levels
of RS-232C an additional chip is need. This is
demonstrated in Figure 2.

 RS-422 is an alternate full-duplex connection
which uses two twisted-pair transmission lines (i.e.,
Tx+/Tx-/Rx+/Rx-) offering long transmission paths
and noise-canceling techniques. This distance is
typically 4000 feet. This connection is shown in
Figure 3. RS-485 is similar to RS-422 with the
exception that it uses a single twisted pair in a half-
duplex arrangement (i.e., +/-). This means data
transmissions must use the same twisted-pair path to
travel in both directions, requiring a simple protocol
of only one unit seizing the transmission pair at a
time while all others listen. This connection is shown
in Figure 4.

1
2
3
4
5

6
7
8
9

J1

5VMicro64/128

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

U1

5V R1
100k

R2
100k

Figure 1: Typical RS-232A Connections

5V

+C4
10uF

+

C3
10uF

+

C2
10uF

+

C1
10uF

5V

5V

1
2
3
4
5

6
7
8
9

J25V

Micro64/128

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

U2

MAX232

1C1+2V+3C1-4C2+5C2-6V-7T2OUT8R2IN 9R2OUT
10T2IN
11T1IN
12R1OUT
13R1IN
14T1OUT
15Vdd
16Vcc

U5

R4
100k

R3
100k

Figure 2: Typical RS-232C Connections

©2004, Micromint, Inc. REV 1.3 May 11, 2005 17
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128

To Receiver

To Transmitter

Micro64/128

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

U3

5V

Figure 3: Typical RS-422 Connections

+
-

Micro64/128

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

U4

5V

Figure 4: Typical RS-485 Connection

1.2 Sample Application: Networking Micro64/128

 Multiple Micro64/128s can be used in a
networked multi-drop configuration. Network
protocol requires that only one unit is allowed to
transmit on the line at a time. All other units are
listening in receive mode.
 This is accomplished by requiring one
Micro64/128 or a device like a PC to be the net
master. The master talks to any slave unit either
passing information to it or requesting information to

it or requesting information from it. The slaves must
never answer the master until a response is
requested. The master then relinquishes the net to
that slave for the response and regains the net when
the slave is finished. This arrangement enables
multiple controllers to work together gathering
numerous inputs and controlling innumerable
outputs, independent of the system size. Figure 5
demonstrates a network.

18 ©2004, Micromint, Inc.

Temperature Probe

Temperature ProbeTemperature Probe

12V

12V

12V

12V12V

12V

+
-

Beeper

+
-

Beeper

+
-

Beeper

Relay

Relay

5V

1k

1k

1k

1k

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

Micro64/128 #4

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

Micro64/128 #1
1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND

22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

Micro64/128 #2

1+V2VBAT3PE34PD05PD16PD57PE48PE29PE110PE011PD412PB713PB614PB515PB416PB317PB218PB119PB020GND 21GND
22PF0
23PF1
24PF2
25PF3
26PF4
27PF5
28PF6
29P7
30ADC0
31ADC1
32PE6
33PE7
34PD6
35PD7
36RX-
37RX+
38TX-
39TX+
40+5V

Micro64/128 #3

Figure 5: RS-485 Network

©2004, Micromint, Inc. REV 1.3 May 11, 2005 19
ATmega64, Atmega128 and AVR are trademarks of Atmel

 Micro64/128
Appendix 2.0 Getting Started With the Micro64

2.1 Software Installation

2.10 Installing the CodeVisionAVR C Compiler
1. Open the CodeVisionAVR Demo folder on the CD.

2. Click on icon and the window similar to the
one below should open.

3. Click the Next button and the following window

should open.

4. Accept the terms in the license agreement.

5. Click the Next button and the following window

should open.

6. Click the Next button and the following window
should open.

7. Click the Next button and the following window
should open.

20 ©2004, Micromint, Inc.

Micro64/128

8. Click the Next button and the following window
should open.

9. Click the Install button and the following window

should open.

10. Wait for the program to install then press the Finish
button.

2.11 Installing the Micro64’s Boot Loader Software

1. Open the Boot Loader folder on the CD.

2. Click on icon and the window similar to the
one below should open.

3. Wait for the files to finish loading and the following

window should appear.

4. Click on the OK button to continue with the install
and the following window should open.

©2004, Micromint, Inc. REV 1.3 May 11, 2005 21

ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128

5. Click on the button and the following
window should open.

6. Click on the Continue button and files should start
loading into your computer. After the files are done
loading the following window should open.

7. Click OK to finish the installation.

2.2 Compiling and running HelloWorld.c

When the compiler is opened for the first time the GUI (Graphical User Interface) should look like the following image.

22 ©2004, Micromint, Inc.

Micro64/128

Please follow the following steps to setup the compiler for a
Micro64/128.

1. Click on “File|New” menu option or click the
toolbar button and the following window will be
displayed.

2. Select “Project” and press “OK” and the following

window will be displayed.

3. For simplicity we will not use the CodeWizardAVR

so click “No” and the following window should
open.

4. Type in a file name of your choice and click “Save”.

For demonstration purposes HelloWorld was chosen
for the File name. The following screen should
appear.

5. Click on the “C Compiler” tab and the window will

look similar to the following.

6. Click the arrow on and
select Atmega64 for Micro64 or Atmega128 for
Micro128.

7. Click next to the first digit in the following

 and change it to
11.0592.

8. After you complete the changes the window should
look like the following for the Micro64/128.

©2004, Micromint, Inc. REV 1.3 May 11, 2005 23
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128

9. All other parameters do not need to be changed in
order to compile a simple program. Please refer to
the CodeVisionAVR’s help section for further
details on the other parameters. Click on the “Files”
tab to continue.

10. The next step would be to add a source file. To add a

source file click the button and the
following window will appear.

11. Find and Select “HelloWorld.c” and click “Open”.
HelloWorld.C can be found on the CD or on
Micromint’s Micro64/128 Datasheet & Application
Notes webpage.
http://www.micromint.com/app_notes/micro64_128.
htm The following window should appear.

12. Click the “OK” button and then you will be ready to

compile the program.
13. To make the hex file for the program click on

“Project|Make” menu option or click the tool
bar button. The following window should open.

14. Click “OK”. Now it is time to program the Micro64.

using the Boot Loader software. If you already
installed the Boot Loader software in section 2.11
then click on “START|Programs| Micromint
Development Tools| Micro64_Micro128
Bootloader” and the following window will open.

24 ©2004, Micromint, Inc.

http://www.micromint.com/app_notes/micro64_128.htm
http://www.micromint.com/app_notes/micro64_128.htm

Micro64/128

The boot loader uses USART1 to download
programs to the Micro64/128. If you are using the
development board then please refer to section 6.31
of the Micro64/128 datasheet to set-up the jumpers
properly.

15. Click the button next to “Application
Code” to select the hex file that was created by the
compiler. A similar window like the following
window will open.

16. Find and select the file “HelloWorld.hex” and click
“Open”.

17. Click on the button to send
the file through COM1 to the Micro64.
NOTE: The Boot Loader software uses the COM
Port when it is sending a file to the Micro64. If the
software says it is unable to open the COM port
there can be a few reasons why.

1. The COM port selected is already in use.
Close the application using the COM port
or select another one.

2. The Micro64/128 is constantly sending
information to the closed COM port. Hold
the RESET button or disconnect the power
the Micro64/128 then click on the
Download button.

18. Press and release the RESET button on the Micro64
development board or cycle the power to the module.
After the program is done downloading the file the
following message box will open.

19. Click “OK” and open HyperTerminal with the
following settings.

20. Press and release the RESET button or cycle the
power. Wait for a moment and you should see
“Hello World” constantly displaying on the screen.
That is all there is to getting a program up and
running.

©2004, Micromint, Inc. REV 1.3 May 11, 2005 25
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

 Micro64/128
2.3 HelloWorld.c Listing.

/**
Program : HelloWorld Example for Micro64 or Micro128
Company : Micromint, Inc
***/

#include <mega64.h> // Comment this line out for Micro128
// For Micro128 make sure that you goto "Project|Configure", to the
// "C Compiler" tab and change the chip to ATmega128
//#include <mega128.h> // Uncomment this line for Micro128
#include <stdio.h> // Standard I/O library

// Declare your global variables here
#define RXB8 1
#define TXB8 0
#define UPE 2
#define OVR 3
#define FE 4
#define UDRE 5
#define RXC 7
#define TXC 6

#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<OVR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)
#define TX_COMPETE (1<<TXC)
int COM; // if COM = 0 then use USART0 if it = 1 then use USART1
//***
// The program lines between the ** lines, like the above line, is needed in order to use the
// printf command for USART1.

/* inform the compiler that an alternate version
 of the getchar function will be used for USART1 */

#define _ALTERNATE_GETCHAR_

/* now define the new getchar function */
char getchar(void)
{
/* write your code here */
char status,data;
 switch(COM)
 {
 case 0:
 while (1)
 {
 while (((status=UCSR0A) & RX_COMPLETE)==0);
 data=UDR0;
 if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
 return data;
 };
 case 1:
 while (1)

26 ©2004, Micromint, Inc.

Micro64/128

 {
 while (((status=UCSR1A) & RX_COMPLETE)==0);
 data=UDR1;
 if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
 return data;
 };
 };
}

/* inform the compiler that an alternate version
 of the putchar function will be used */
#define _ALTERNATE_PUTCHAR_

/* now define the new putchar function */
void putchar(char c)
{
/* write your code here */
 switch(COM)
 {
 case 0:
 while ((UCSR0A & DATA_REGISTER_EMPTY)==0);
 UDR0=c;
 break;
 case 1:
 while ((UCSR1A & DATA_REGISTER_EMPTY)==0);
 UDR1=c;
 while ((UCSR1A & TX_COMPETE)==0);
 };
}
//***
void main(void)
{
// Declare your local variables here

// Set up USART1's Baud rate at 9600 bps with a 11.0592 MHz Crystal
UCSR1A=0x00; // RX EN, TX EN
UCSR1B=0x18; // RX EN, TX EN
UCSR1C=0x06; // 8N1
UBRR1H=0x00; // Baud rate high - 9600
UBRR1L=0x47; // Baud rate low

COM = 1; // Use USART1
DDRD.6 = 0; // Make
PORTD.6 an output
PORTD.6 = 1; // Enable the
RS485 control line

while (1)
 {
 printf("Hello World\r\n");
 };
}

©2004, Micromint, Inc. REV 1.3 May 11, 2005 27
ATmega64 and AVR are trademarks of Atmel,
CodeVisionAVR is trademark of HP InfoTech,
BASCOM-AVR is trademark of MCS Electronics

